Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emil Adamec is active.

Publication


Featured researches published by Emil Adamec.


Acta Neuropathologica | 2002

Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2

Emil Adamec; Panaiyur S. Mohan; Jean P. Vonsattel; Ralph A. Nixon

Abstract. The calcium-activated protease calpain cleaves a variety of biologically important proteins and serves, therefore, as a key regulator of many cellular functions. Activation of both main isoforms, calpain 1 and calpain 2, was demonstrated previously in Alzheimers disease. In this report, antibodies specifically recognizing the active form of calpain 2 were used to investigate calpain 2 activation in a broad range of neurodegenerative diseases, utilizing multiple-label confocal immunofluorescence imaging. With rare exceptions, the active form of calpain 2 was found in colocalization with hyperphosphorylated tau protein. Aggregates of mutated huntingtin, α-synuclein, or unidentified protein in motor neuron disease type of frontotemporal dementia were always negative. These findings indicate that calpain 2 activation is not a general response to protein aggregation. In tauopathies, more pathological inclusions were labeled for hyperphosphorylated tau than for activated calpain 2. The extent of colocalization varied in both a disease-specific and cell-type specific manner. The active form of calpain 2 was detected in 50–75% of tau neurofibrillary pathology in Alzheimers disease, Alzheimer neurofibrillary changes and Downs syndrome, as well as in the accompanying Alzheimer-type tau pathology in diffuse Lewy bodies disease, progressive supranuclear palsy, and corticobasal degeneration. For glial cells, only 10–25% of tuft-shaped astrocytes, glial plaques, or coiled bodies contained activated calpain 2. The majority of Pick bodies were negative. The association of calpain 2 activation with hyperphosphorylated tau might be the result of an attempt by the calpain proteolytic system to degrade the tau protein aggregates. Alternatively, calpain 2 could be directly involved in tau hyperphosphorylation by modulating protein kinase activities. Overall, these results provide evidence of the important role of the calpain proteolytic system in the pathogenesis of neurodegenerative diseases with tau neurofibrillary pathology.


Molecular Brain Research | 1998

Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death

Emil Adamec; Mary Lou Beermann; Ralph A. Nixon

Administration of glutamate (100 microM) to primary cultures of rat hippocampal neurons for 1 h led to calpain I activation as determined by monitoring the extent of spectrin breakdown with the antibodies designed to specifically recognize the calpain I-mediated spectrin breakdown products. Based on the studies with subtype selective antagonists of glutamate receptors, glutamate caused calpain I activation specifically through the activation of the NMDA receptor. In parallel experiments, the magnitude and the temporal profiles of Ca2+ rise were determined by Fura-2 microfluorimetry. Ca2+ influx through voltage-sensitive Ca2+ channels, even though leading to substantial Ca2+ rise, did not by itself activate calpain I. These results indicate that for calpain I activation, the source of Ca1+ influx is more important than the magnitude of Ca2+ rise. Glutamate-mediated calpain I activation was fully blocked by preincubation (30 min) of the cultures with calpain inhibitor I, calpain inhibitor II, or calpeptin (all 10 microM). The presence of calpain inhibitors did not, however, in any way ameliorate the massive excitotoxicity resulting from 16 h exposure to glutamate, indicating that calpain I activation and excitotoxicity are not causally related events. Similarly, preincubation with any of the tested calpain inhibitors was detrimental to the clearance of neuritic from a 10-min exposure to glutamate. Additionally, the presence of calpain inhibitors was detrimental to the clearance of neuritic varicosities resulting from a short-term sublethal exposure to glutamate, suggesting that a physiological level of calpain I activation might actually play an important homeostatic role in the restoration of normal cytoskeletal organization.


Brain Research | 1997

Acute rise in the concentration of free cytoplasmic calcium leads to dephosphorylation of the microtubule-associated protein tau.

Emil Adamec; Marc Mercken; Mary Lou Beermann; Michel Didier; Ralph A. Nixon

The objective of this study was to asses the response of the microtubule-associated protein tau to acute rise in the concentration of free cytoplasmic calcium ([Ca2+]i) in rat cortical neurons and mouse cerebellar granule cells in culture. One-hour exposure to glutamate (100 microM), N-methyl-D-aspartate (100 microM), KCl (50 mM), and ionomycin (5 microM) led to tau protein dephosphorylation as indicated by an appearance of additional faster moving bands on Western immunoblots with a phosphorylation-independent antibody and an increase in the tau-1 immunoreactivity associated with the appearance of an additional faster moving band. Lowering the extracellular concentration of Ca2+ to less than 1 microM fully prevented the drug-induced tau protein dephosphorylation indicating a dependence on Ca2+ influx from the extracellular environment. Administration of okadaic acid (inhibitor of phosphatase 1/2A) simultaneously with the above mentioned drugs decreased the drug-mediated dephosphorylation. Pre-incubation with okadaic acid fully prevented the dephosphorylation. Treatment with cypermethrin (inhibitor of phosphatase 2B) was without effect when administered either alone, simultaneously with the drugs, or pre-incubated. These findings indicate that, independently of the influx pathway, [Ca2+]i elevation leads to dephosphorylation of the microtubule-associated protein tau and implicate phosphatase 1 and/or 2A in the process.


Brain Research Protocols | 2001

Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration☆

Emil Adamec; Fusheng Yang; Greg M. Cole; Ralph A. Nixon

A prominent feature of neurodegenerative diseases is a loss of specific neuronal populations. The pathophysiological mechanisms responsible are, however, poorly understood. Primary cultures of rodent embryonic neurons represent a useful experimental system for investigation of molecular pathways of neurodegeneration and mechanisms of cell death. Here, we report a technique utilizing triple-label immunocytochemistry with confocal immunofluorescence detection designed to simultaneously assess multiple parameters of cell injury in individual hippocampal neurons in primary culture. This method combines detection of DNA damage (TUNEL or Klenow assay) with double-label immunocytochemistry for the activated form of caspase-3 or, alternatively, caspase-cleaved actin (fractin), and microtubule-associated protein-2 (MAP-2) or beta-tubulin. The combined evaluation of the form of nuclear damage (karyorrhexis, pyknosis), the presence or absence of activated caspase-3, and the extent of the damage to cell cytoskeleton, allows for precise assessment of the extent of injury and the mode of cell death (apoptosis, oncosis) for individual neurons.


Molecular Brain Research | 1999

Isoform-specific translocation of protein kinase C following glutamate administration in primary hippocampal neurons

Klaus Buchner; Emil Adamec; Mary Lou Beermann; Ralph A. Nixon

High concentrations of glutamate, the major excitatory neurotransmitter in the mammalian brain, lead to intracellular calcium overload resulting in excitotoxic damage and death of neurons. Since protein kinase C (PKC) is involved in neuronal degeneration resulting from cerebral ischemia and from glutamate excitotoxicity, we investigated the effect of glutamate on changes in the cellular distribution of various PKC isoforms in cultured hippocampal neurons in comparison with the effects elicited by the PKC activator phorbol ester. Out of the expressed PKC isoforms alpha, gamma, epsilon, zeta and lambda only the conventional isoforms PKC alpha and gamma responded to glutamate. Using subcellular fractionation and Western blotting with isoform-specific antibodies and immunocytochemical localization with confocal laser scanning microscopy, we observed that phorbol ester and glutamate have different effects on PKC isoform redistribution: Whereas phorbol ester resulted in translocation of PKC alpha and PKC gamma toward a membrane fraction, the glutamate-mediated rise in intracellular calcium concentration induced a translocation mainly toward a detergent-insoluble, cytoskeletal fraction. Immunocytochemical analysis revealed an isoform-specific translocation following glutamate treatment: PKC gamma was translocated mainly to cytoplasmic, organelle-like structures, whereas PKC alpha redistributed to the plasma membrane and into the cell nucleus. The latter result is of special interest, as it indicates that nuclear PKC may play a role in processes of excitotoxic cell damage.


Developmental Brain Research | 1998

Developmental regulation of the recovery process following glutamate-induced calcium rise in rodent primary neuronal cultures

Emil Adamec; Michel Didier; Ralph A. Nixon

CNS neurons exhibit a profound, maturation-dependent increase in the vulnerability to injury. Little is, however, known about the cellular mechanisms involved. This study investigated the developmental influence on the ability to recover the resting concentration of free cytoplasmic Ca2+ ([Ca2+]i) following stimulation with 100 microM glutamate in hippocampal and cerebellar granule cells in culture. Primary neurons were exposed to glutamate for either 1 min or 10 min. Hippocampal neurons were evaluated at 7, 12-14, and 17-19 days in vitro (DIV), and cerebellar granule cells were tested at 8-9 or 15-16 DIV. In hippocampal neurons, either an increased age in culture or longer drug exposure were both associated with less efficient [Ca2+]i recovery. Additionally, for both 1-min and 10-min drug exposure, increased age in culture was the primary determinant of the development of secondary [Ca2+]i destabilization followed by a very variable recovery patterns. Similar to hippocampal neurons, older cerebellar granule cells also recovered less efficiently from glutamate-mediated [Ca2+]i rise. The difference in the extent of recovery was not directly influenced by the magnitude of the [Ca2+]i rise, since cerebellar granule cells recovered from both high or low [Ca2+]i rise with similar kinetic profiles. Overall, the results presented in this study implicate the age in culture as an important influencing factor of both the less efficient recovery from glutamate-induced Ca2+ load and the development of secondary [Ca2+]i destabilizations. The progressive, maturation-dependent, decrease in the ability to recover from Ca2+ load might represent a potentially important mechanism contributing to the increased vulnerability of fully developed neurons to injury.


Neuroscience Letters | 2001

Tau protein expression in frontotemporal dementias.

Emil Adamec; Howard T Chang; Edward G. Stopa; John C. Hedreen; Jean P. Vonsattel

The syndrome of frontotemporal dementia represents a diverse group of diseases presenting with behavioral and cognitive disturbances. The expression of the microtubule-associated protein tau was studied in postmortem samples of frontal cortex of 19 cases (12 Picks disease A, B, C; 4 dementia lacking distinct histology; 3 motor neuron disease type) by Western blotting with a phosphorylation-independent anti-tau antibody. The presence of tau protein was detected in all cases evaluated, including the 11 brains classified as frontotemporal lobe degeneration (diagnostic categories Picks disease B, C and dementia lacking distinct histology). These findings indicate that the recently reported decreased expression of tau protein in frontotemporal lobe degeneration represents pathogenic mechanism of neurodegeneration detectable only in a special subset of these disorders.


Journal of the Neurological Sciences | 2002

P301L tauopathy: confocal immunofluorescence study of perinuclear aggregation of the mutated protein

Emil Adamec; Jill R. Murrell; Masaki Takao; Wendy Hobbs; Ralph A. Nixon; Bernardino Ghetti; Jean P. Vonsattel

The clinical and neuropathological features in the P301L tauopathy have been described in several kindreds. In this study, we present findings in two previously unreported patients, evaluated both genetically, neuropathologically, and with multiparametric confocal immunofluorescence. The patients were female, with age 65 and 75 years old, respectively. Both exhibited clinical symptoms of frontotemporal dementia (FTD). Marked atrophy of the frontal and temporal lobes with moderate atrophy of the remaining cerebral and brain stem structures was present. The substantia nigra was pale. The atrophic neocortical regions exhibited neuronal loss, marked gliosis, status spongiosus, and occasional ballooned neurons. By light microscopy, the most striking findings were argyrophilic perinuclear rings, frequently with an attached small inclusion (mini Pick-like body), especially prominent in dentate granule cells, entorhinal and temporal cortices, and to a lesser extent in CA1. These structures were immunopositive for tau protein (Tau-2, AT-8, PHF-1, MC-1). Numerous astrocytic plaques, tuft-shaped astrocytes, coiled bodies, and dystrophic neurites were also present. Confocal immunofluorescence with a P301L-specific antibody directly demonstrated the presence of the mutated protein in the PHF-1 positive aggregates. The mutated tau protein (4-repeat tau) was detected in the mini Pick-like bodies, indicating an important biochemical difference between these inclusions and classical Pick bodies (3-repeat tau). Additionally, since 4-repeat tau protein is not normally present in dentate granule cells, this result also suggests an abnormality in the mRNA splicing mechanisms. The structural features of the involvement of proteolytic systems in this tauopathy were assessed by immunohistochemistry for the active form of calpain II (C-27) and ubiquitin. Colocalization of PHF-1 positive aggregates with C-27 points to the possible involvement of calpain in tau protein hyperphosphorylation. Absence of immunostaining for ubiquitin indicates possible dysfunction of the ubiquitin-proteasome system in this tauopathy.


Synapse | 1994

The effects of chronic haloperidol administration on GABA-immunoreactive axon terminals in rat medial prefrontal cortex.

Stephen L. Vincent; Emil Adamec; Ingrid Sorensen; Francine M. Benes


Neurobiology of Aging | 2000

Upregulation of the lysosomal system in experimental models of neuronal injury: Implications for Alzheimer's disease

Emil Adamec; Panaiyur S. Mohan; Anne M. Cataldo; Ann N. Srinivasan; Jean Paul Vonsattel; Ralph A. Nixon

Collaboration


Dive into the Emil Adamec's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge