Emil Göttlich
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emil Göttlich.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2008
Wolfgang Sanz; Herbert Jericha; Bernhard Bauer; Emil Göttlich
Since the Kyoto conference, there is a broad consensus that the human emission of greenhouse gases, mainly CO2, has to be reduced. In the power generation sector, there are three main alternatives that are currently studied worldwide. Among them oxy-fuel cycles with internal combustion with pure oxygen are a very promising technology. Within the European project ENCAP (enhanced CO2 capture) the benchmarking of a number of novel power cycles with CO2 capture was carried out. Within the category oxy-fuel cycles, the Graz Cycle and the semiclosed oxy-fuel combustion combined cycle (SCOC-CC) both achieved a net efficiency of nearly 50%. In a second step, a qualitative comparison of the critical components was performed according to their technical maturity. In contrast to the Graz Cycle, the study authors claimed that no major technical barriers would exist for the SCOC-CC. In this work, the ENCAP study is repeated for the SCOC-CC and for a modified Graz Cycle variant as presented at the ASME IGTI Conference 2006. Both oxy-fuel cycles are thermodynamically investigated based on common assumptions agreed upon with the industry in previous work. The calculations showed that the high-temperature turbine of the SCOC-CC plant needs a much higher cooling flow supply due to the less favorable properties of the working fluid. A layout of the main components of both cycles is further presented, which shows that both cycles rely on the new designs of the high-temperature turbine and the compressors. The SCOC-CC compressor needs more stages due to a lower rotational speed but has a more favorable operating temperature. In general, all turbomachines of both cycles show similar technical challenges and are regarded as feasible.
Journal of Turbomachinery-transactions of The Asme | 2006
Emil Göttlich; Jakob Woisetschläger; P. Pieringer; B. Hampel; Franz Heitmeir
The current paper presents a time-resolved experimental flow investigation in a highly loaded transonic gas turbine stage operating continuously under engine representative conditions. The measurement was performed with a two-component laser-doppler-velocimeter (LDV) and a three-component stereoscopic particle-image-velocimeter (3C-PIV). Unsteady velocity data were obtained in axis perpendicular planes (LDV) and tangential planes (3C-PIV) between stator and rotor as well as downstream of the rotor. The results of the time-resolved investigation at several radii show the vortex shedding process from the trailing edges of nozzle guide vanes and rotor blades. This vortex shedding was found to be phase locked to higher harmonics of the blade passing frequency. Pressure waves evoked by reflection of the trailing edge shocks of the vanes on the passing rotor blades interact with the boundary layers on the rear suction side of the vanes and on the rotor blade surfaces while running upstream and downstream the flow. They are responsible for this phase-locking phenomenon of the shedding vortices. At midspan, the vortices shedding from stator and rotor blades were also observed by PIV. The in-plane vorticity distribution was used to discuss the wake-wake interaction indicating that wake segments from the nozzle guide vanes were chopped by the rotor blades. These chopped segments are still visible in the distributions as a pair of counter rotating vortices. The nozzle wake segments are transported through the rotor passages by the flow, influencing the vortex street of the rotor blades as they pass by with the higher velocity of the main flow. A comparison with a numerical simulation is also given.
Journal of Turbomachinery-transactions of The Asme | 2009
Andreas Marn; Emil Göttlich; D. Cadrecha; H. P. Pirker
The demand of further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters, which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at larger diameters minimizing the losses and providing an adequate flow at the low pressure (LP)-turbine inlet. Due to costs and weight, this intermediate turbine duct has to be as short as possible. This would lead to an aggressive (high diffusion) s-shaped duct geometry. It is possible to shorten the duct simply by reducing the length but the risk of separation is rising and losses increase. Another approach to shorten the duct and thus the engine length is to apply a so called integrated concept. These are novel concepts where the struts, mounted in the transition duct, replace the usually following LP-vane row. This configuration should replace the first LP-vane row from a front bearing engine architecture where the vane needs a big area to hold bearing services. That means the rotor is located directly downstream of the strut. This means that the struts have to provide the downstream blade row with undisturbed inflow with suitable flow angle and Mach number. Therefore, the (lifting) strut has a distinct three-dimensional design in the more downstream part, while in the more upstream part, it has to be cylindrical to be able to lead through supply lines. In spite of the longer chord compared with the base design, this struts have a thickness to chord ratio of 18%. To apply this concept, a compromise must be found between the number of struts (weight), vibration, noise, and occurring flow disturbances due to the secondary flows and losses. The struts and the outer duct wall have been designed by Industria de Turbopropulsores. The inner duct was kept the same as for the base line configuration (designed by Motoren und Turbinen Union). The aim of the design was to have similar duct outflow conditions (exit flow angle and radial mass flow distribution) as the base design with which it is compared in this paper. This base design consists of a single transonic high pressure (HP)-turbine stage, an aggressive s-shaped intermediate turbine duct, and a LP-vane row. Both designs used the same HP-turbine and were run in the continuously operating Transonic Test Turbine Facility at Graz University of Technology under the same engine representative inlet conditions. The flow field upstream and downstream the LP-vane and the strut, respectively, has been investigated by means of five hole probes. A rough estimation of the overall duct loss is given as well as the upper and lower weight reduction limit for the integrated concept.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2008
Herbert Jericha; Wolfgang Sanz; Emil Göttlich
The introduction of closed cycle gas turbines with their capability of retaining combustion generated CO 2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore research and development work at the Graz University of Technology since the 1990s has led to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen which enables the cost-effective separation of the combustion CO 2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than for modern combined cycle plants. Upon the basis of the previous work, the authors present the design concept for a large power plant of 400 MW net power output making use of the latest developments in gas turbine technology. The Graz Cycle configuration is changed, insofar as condensation and separation of combustion generated CO 2 takes place at the 1 bar range in order to avoid the problems of condensation of water out of a mixture of steam and incondensable gases at very low pressure. A final economic analysis shows promising CO 2 mitigation costs in the range of
ASME Turbo Expo 2002: Power for Land, Sea, and Air | 2002
Herbert Jericha; Emil Göttlich
20―30/ton CO 2 avoided. The authors believe that they present here a partial solution regarding thermal power production for the most urgent problem of saving our climate.
ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference | 2003
Herbert Jericha; Emil Göttlich; Wolfgang Sanz; Franz Heitmeir
The gas turbine system GRAZ CYCLE has been thoroughly studied in terms of thermodynamics and turbomachinery layout. What is to be presented here is a prototype design for an industrial size plant, suited for NG-fuel and coal and heavy fuel oil gasification products, capable to retain the CO2 from combustion and at the same time able to achieve maximum thermal efficiency. The authors hope for an international cooperation to make such a plant available within a few years.
Journal of Turbomachinery-transactions of The Asme | 2014
Rosario Spataro; Emil Göttlich; Davide Lengani; Christian Faustmann; Franz Heitmeir
Introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. The use of well established gas turbine technology enhanced by recent research results enables designers even today to present proposals for prototype plants. Research and development work of TTM Institute of Graz University of Technology since the 90’s has lead to the Graz Cycle, a zero emission power cycle of highest efficiency and with most positive features. In this work the design for a prototype plant based on current technology as well as cutting-edge turbomachinery is presented. The object of such a plant shall be the demonstration of operational capabilities and shall lead to the planning and design of much larger units of highest reliability and thermal efficiency.Copyright
ASME Turbo Expo 2005: Power for Land, Sea, and Air | 2005
Wolfgang Sanz; Herbert Jericha; F. Luckel; Emil Göttlich; Franz Heitmeir
© 2014 by ASME. The paper presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed in order to simulate the flow behavior of a transonic turbine followed by a counter-rotating low pressure (LP) stage like the spools of a modern high bypass aeroengine. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of turning struts placed into the mid turbine frame is to lead the flow towards the LP rotor with appropriate swirl. Experimental and numerical investigations performed on the setup over the last years, which were used as baseline for this paper, showed that wide chord vanes induce large wakes and extended secondary flows at the LP rotor inlet flow. Moreover, unsteady interactions between the two turbines were observed downstream of the LP rotor. In order to increase the uniformity and to decrease the unsteady content of the flow at the inlet of the LP rotor, the mid turbine frame was redesigned with two zero-lifting splitters embedded into the strut passage. In this first part of the paper the design process of the splitters and its critical points are presented, while the time-averaged field is discussed by means of five-hole probe measurements and oil flow visualizations. The comparison between the baseline case and the embedded design configuration shows that the new design is able to reduce the flow gradients downstream of the turning struts, providing a more suitable inlet condition for the low pressure rotor. The improvement in the flow field uniformity is also observed downstream of the turbine and it is, consequently, reflected in an enhancement of the LP turbine performance. In the second part of this paper the influence of the embedded design on the time-resolved field is investigated.
ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009
Wolfgang Sanz; M. Kelterer; Rene Pecnik; Andreas Marn; Emil Göttlich
Introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore research and development work at Graz University of Technology since the nineties has led to the Graz Cycle, a zero emission power cycle of highest efficiency. It burns fossil fuels with pure oxygen which enables the costeffective separation of the combustion CO2 by condensation. The efforts for the oxygen supply in an air separation plant are partly compensated by cycle efficiencies far higher than for modern combined cycle plants. At the ASME IGTI conference 2004 in Vienna a high steam content S-Graz Cycle power plant was presented showing efficiencies for syngas firing up to 70 % and a net efficiency of 57 % considering oxygen supply and CO2 compression. A first economic analysis gave CO2 mitigation costs of about 10
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2003
Jakob Woisetschläger; H. Lang; B. Hampel; Emil Göttlich; Franz Heitmeir
/ton CO2 avoided. These favourable data induced the Norwegian oil and gas company Statoil ASA to order a techno-economic evaluation study of the Graz Cycle. In order to allow a benchmarking of the Graz Cycle and a comparison with other CO2 capture concepts, the assumptions of component efficiency and losses are modified to values agreed with Statoil. In this work the new assumptions made and the resulting power cycle for natural gas firing, which is the most likely fuel of a first demonstration plant, are presented. Further modifications of the cycle scheme are discussed and their potential is analyzed. Finally, an economic analysis of the Graz Cycle power plant is performed showing low CO2 mitigation costs in the range of 20