Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emiley A. Eloe-Fadrosh is active.

Publication


Featured researches published by Emiley A. Eloe-Fadrosh.


Nature | 2016

Uncovering Earth's virome

David Paez-Espino; Emiley A. Eloe-Fadrosh; Georgios A. Pavlopoulos; Alex D. Thomas; Marcel Huntemann; Natalia Mikhailova; Edward S. Rubin; Natalia Ivanova; Nikos C. Kyrpides

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host–virus interactions.


Nature Biotechnology | 2018

Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

Robert M. Bowers; Nikos C. Kyrpides; Ramunas Stepanauskas; Miranda Harmon-Smith; Devin Fr Doud; T. B.K. Reddy; Frederik Schulz; Jessica Jarett; Adam R. Rivers; Emiley A. Eloe-Fadrosh; Susannah G. Tringe; Natalia Ivanova; Alex Copeland; Alicia Clum; Eric D. Becraft; Rex R. Malmstrom; Bruce W. Birren; Mircea Podar; Peer Bork; George M. Weinstock; George M Garrity; Jeremy A. Dodsworth; Shibu Yooseph; Granger Sutton; Frank Oliver Gloeckner; Jack A. Gilbert; William C. Nelson; Steven J. Hallam; Sean P. Jungbluth; Thijs J. G. Ettema

We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.


Nature Biotechnology | 2017

1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

Supratim Mukherjee; Rekha Seshadri; Neha Varghese; Emiley A. Eloe-Fadrosh; Jan P. Meier-Kolthoff; Markus Göker; R. Cameron Coates; Michalis Hadjithomas; Georgios A. Pavlopoulos; David Paez-Espino; Yasuo Yoshikuni; Axel Visel; William B. Whitman; George M Garrity; Jonathan A. Eisen; Philip Hugenholtz; Amrita Pati; Natalia Ivanova; Tanja Woyke; Hans-Peter Klenk; Nikos C. Kyrpides

We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.


Nature microbiology | 2016

Metagenomics uncovers gaps in amplicon-based detection of microbial diversity

Emiley A. Eloe-Fadrosh; Natalia Ivanova; Tanja Woyke; Nikos C. Kyrpides

Our view of microbial diversity has expanded greatly over the past 40 years, primarily through the wide application of PCR-based surveys of the small-subunit ribosomal RNA (SSU rRNA) gene. Yet significant gaps in knowledge remain due to well-recognized limitations of this method. Here, we systematically survey primer fidelity in SSU rRNA gene sequences recovered from over 6,000 assembled metagenomes sampled globally. Our findings show that approximately 10% of environmental microbial sequences might be missed from classical PCR-based SSU rRNA gene surveys, mostly members of the Candidate Phyla Radiation (CPR) and as yet uncharacterized Archaea. These results underscore the extent of uncharacterized microbial diversity and provide fruitful avenues for describing additional phylogenetic lineages.


Nature Biotechnology | 2018

Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection

Rekha Seshadri; Sinead C. Leahy; Graeme T. Attwood; Koon Hoong Teh; Suzanne C. Lambie; Adrian L. Cookson; Emiley A. Eloe-Fadrosh; Georgios A. Pavlopoulos; Michalis Hadjithomas; Neha Varghese; David Paez-Espino; Nikola Palevich; Peter H. Janssen; Ron S. Ronimus; Samantha Noel; Priya Soni; Kerri Reilly; Todd Atherly; Cherie J. Ziemer; André-Denis G. Wright; Suzanne Ishaq; Michael A. Cotta; Stephanie Thompson; Katie Crosley; Nest McKain; R. John Wallace; Harry J. Flint; Jennifer C. Martin; Robert J Forster; Robert J Gruninger

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.


PeerJ | 2017

Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity

Simon Roux; Joanne B. Emerson; Emiley A. Eloe-Fadrosh; Matthew B. Sullivan

Background Viral metagenomics (viromics) is increasingly used to obtain uncultivated viral genomes, evaluate community diversity, and assess ecological hypotheses. While viromic experimental methods are relatively mature and widely accepted by the research community, robust bioinformatics standards remain to be established. Here we used in silico mock viral communities to evaluate the viromic sequence-to-ecological-inference pipeline, including (i) read pre-processing and metagenome assembly, (ii) thresholds applied to estimate viral relative abundances based on read mapping to assembled contigs, and (iii) normalization methods applied to the matrix of viral relative abundances for alpha and beta diversity estimates. Results Tools specifically designed for metagenomes, specifically metaSPAdes, MEGAHIT, and IDBA-UD, were the most effective at assembling viromes. Read pre-processing, such as partitioning, had virtually no impact on assembly output, but may be useful when hardware is limited. Viral populations with 2–5 × coverage typically assembled well, whereas lesser coverage led to fragmented assembly. Strain heterogeneity within populations hampered assembly, especially when strains were closely related (average nucleotide identity, or ANI ≥97%) and when the most abundant strain represented <50% of the population. Viral community composition assessments based on read recruitment were generally accurate when the following thresholds for detection were applied: (i) ≥10 kb contig lengths to define populations, (ii) coverage defined from reads mapping at ≥90% identity, and (iii) ≥75% of contig length with ≥1 × coverage. Finally, although data are limited to the most abundant viruses in a community, alpha and beta diversity patterns were robustly estimated (±10%) when comparing samples of similar sequencing depth, but more divergent (up to 80%) when sequencing depth was uneven across the dataset. In the latter cases, the use of normalization methods specifically developed for metagenomes provided the best estimates. Conclusions These simulations provide benchmarks for selecting analysis cut-offs and establish that an optimized sample-to-ecological-inference viromics pipeline is robust for making ecological inferences from natural viral communities. Continued development to better accessing RNA, rare, and/or diverse viral populations and improved reference viral genome availability will alleviate many of viromics remaining limitations.


Trends in Microbiology | 2016

Microbiome Data Science: Understanding Our Microbial Planet

Nikos C. Kyrpides; Emiley A. Eloe-Fadrosh; Natalia Ivanova

Microbiology is experiencing a revolution brought on by recent developments in sequencing technology. The unprecedented volume of microbiome data being generated poses significant challenges that are currently hindering progress in the field. Here, we outline the major bottlenecks and propose a vision to advance microbiome research as a data-driven science.


The ISME Journal | 2018

Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota

Lin-Xing Chen; Celia Méndez-García; Nina Dombrowski; Luis E. Servín-Garcidueñas; Emiley A. Eloe-Fadrosh; Bao-Zhu Fang; Zhen-Hao Luo; Sha Tan; Xiao-Yang Zhi; Zheng-shuang Hua; Esperanza Martínez-Romero; Tanja Woyke; Li-Nan Huang; Jesus Sanchez; Ana I. Peláez; Manuel Ferrer; Brett J. Baker; Wen-Sheng Shu

Small acidophilic archaea belonging to Micrarchaeota and Parvarchaeota phyla are known to physically interact with some Thermoplasmatales members in nature. However, due to a lack of cultivation and limited genomes on hand, their biodiversity, metabolisms, and physiologies remain largely unresolved. Here, we obtained 39 genomes from acid mine drainage (AMD) and hot spring environments around the world. 16S rRNA gene based analyses revealed that Parvarchaeota were only detected in AMD and hot spring habitats, while Micrarchaeota were also detected in others including soil, peat, hypersaline mat, and freshwater, suggesting a considerable higher diversity and broader than expected habitat distribution for this phylum. Despite their small genomes (0.64–1.08 Mb), these archaea may contribute to carbon and nitrogen cycling by degrading multiple saccharides and proteins, and produce ATP via aerobic respiration and fermentation. Additionally, we identified several syntenic genes with homology to those involved in iron oxidation in six Parvarchaeota genomes, suggesting their potential role in iron cycling. However, both phyla lack biosynthetic pathways for amino acids and nucleotides, suggesting that they likely scavenge these biomolecules from the environment and/or other community members. Moreover, low-oxygen enrichments in laboratory confirmed our speculation that both phyla are microaerobic/anaerobic, based on several specific genes identified in them. Furthermore, phylogenetic analyses provide insights into the close evolutionary history of energy related functionalities between both phyla with Thermoplasmatales. These results expand our understanding of these elusive archaea by revealing their involvement in carbon, nitrogen, and iron cycling, and suggest their potential interactions with Thermoplasmatales on genomic scale.


bioRxiv | 2018

Effect of the macroalgae Asparagopsis taxiformis on methane production and the rumen microbiome assemblage

Breanna M Roque; Charles G Brooke; Joshua Ladau; Tamsen Polley; Lynsdey Marsh; Negeen Najafi; Pramod K. Pandey; Latika Singh; Joan Salwen; Emiley A. Eloe-Fadrosh; E. Kebreab; Matthias Hess

Background Recent studies using batch-fermentation suggest that the red macroalgae Asparagopsis taxiformis might reduce methane (CH4) emission from beef cattle by up to ~99% when added to rhodes grass hay, a common feed in the Australian beef industry. These experiments have shown significant reductions in methane without compromising other fermentation parameters (i.e. volatile fatty acid production) with A. taxiformis organic matter (OM) inclusion rates of up to 5%. In the study presented here, A. taxiformis was evaluated for its ability to reduce methane production from dairy cattle fed a mixed ration widely utilized in California; the largest milk producer in the US. Results Fermentation in a semi-continuous in-vitro rumen system suggests that A. taxiformis can reduce methane production from enteric fermentation in dairy cattle by 95% when added at a 5% OM inclusion rate without any obvious negative impacts on volatile fatty acid production. High-throughput 16S ribosomal RNA (rRNA) gene amplicon sequencing showed that seaweed amendment effects rumen microbiome communities consistent with the Anna Karenina hypothesis, with increased beta-diversity, over time scales of approximately three days. The relative abundance of methanogens in the fermentation vessels amended with A. taxiformis decreased significantly compared to control vessels, but this reduction in methanogen abundance was only significant when averaged over the course of the experiment. Alternatively, significant reductions of methane in the A. taxiformis amended vessels was measured in the early stages of the experiment. This suggests that A. taxiformis has an immediate effect on the metabolic functionality of rumen methanogens whereas its impact on microbiome assemblage, specifically methanogen abundance, is delayed. Conclusions The methane reducing effect of A. taxiformis during rumen fermentation makes this macroalgae a promising candidate as a biotic methane mitigation strategy in the largest milk producing state in the US. But its effect in-vivo (i.e. in dairy cattle) remains to be investigated in animal trials. Furthermore, to obtain a holistic understanding of the biochemistry responsible for the significant reduction of methane, gene expression profiles of the rumen microbiome and the host animal are warranted.


Nucleic Acids Research | 2018

IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes.

I-Min A. Chen; Ken Chu; Krishna Palaniappan; Manoj Pillay; Anna Ratner; Jinghua Huang; Marcel Huntemann; Neha Varghese; James R White; Rekha Seshadri; Tatyana Smirnova; Edward Kirton; Sean P. Jungbluth; Tanja Woyke; Emiley A. Eloe-Fadrosh; Natalia Ivanova; Nikos C. Kyrpides

Abstract The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE’s Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG’s web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.

Collaboration


Dive into the Emiley A. Eloe-Fadrosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Fr Doud

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge