Emilia A. Kimura
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emilia A. Kimura.
Antimicrobial Agents and Chemotherapy | 2004
Herbert Rodrigues Goulart; Emilia A. Kimura; Valnice J. Peres; Alicia S. Couto; Fulgencio A. Aquino Duarte; Alejandro M. Katzin
ABSTRACT Development of new drugs is one of the strategies for malaria control. The biosynthesis of several isoprenoids in Plasmodium falciparum was recently described. Interestingly, some intermediates and final products biosynthesized by this pathway in mammals differ from those biosynthesized in P. falciparum. These facts prompted us to evaluate various terpenes, molecules with a similar chemical structure to the intermediates of the isoprenoids pathway, as potential antimalarial drugs. Different terpenes and S-farnesylthiosalicylic acid were tested on cultures of the intraerythrocytic stages of P. falciparum, and the 50% inhibitory concentrations for each one were found: farnesol, 64 μM; nerolidol, 760 nM; limonene, 1.22 mM; linalool, 0.28 mM; and S-farnesylthiosalicylic acid, 14 μM. All the terpenes tested inhibited dolichol biosynthesis in the trophozoite and schizont stages when [1-(n)-3H]farnesyl pyrophosphate triammonium salt ([3H]FPP) was used as precursor. Farnesol, nerolidol, and linalool showed stronger inhibitory activity on the biosynthesis of the isoprenic side chain of the benzoquinone ring of ubiquinones in the schizont stage. Treatment of schizont stages with S-farnesylthiosalicylic acid led to a decrease in intensity of the band corresponding a p21ras protein. The inhibitory effect of terpenes and S-farnesylthiosalicylic acid on the biosynthesis of both dolichol and the isoprenic side chain of ubiquinones and the isoprenylation of proteins in the intraerythrocytic stages of P. falciparum appears to be specific, because overall protein biosynthesis was not affected. Combinations of some terpenes or S-farnesylthiosalicylic acid tested in this work with other antimalarial drugs, like fosmidomycin, could be a new strategy for the treatment of malaria.
Biochemical Journal | 1999
Alicia S. Couto; Emilia A. Kimura; Valnice J. Peres; María Laura Uhrig; Alejandro M. Katzin
N-glycosylation of proteins is required for the intra-erythrocytic schizogony of Plasmodium falciparum. In eukaryotic cells, this process involves the transfer of oligosaccharides from a dolichyl pyrophosphate derivative to asparagine residues. We have identified dolichol, dolichyl phosphate and dolichyl pyrophosphate species of 11 and 12 isoprenoid residues by metabolic labelling with [(3)H]farnesyl pyrophosphate, [(3)H]geranylgeranyl pyrophosphate and [(14)C]acetate in the different intra-erythrocytic stages of P. falciparum. This is the first demonstration of short-chain dolichols in the phylum Apicomplexa. The results demonstrate the presence of an active isoprenoid pathway in the intra-erythrocytic stages of P. falciparum. Parasites treated with mevastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, show depressed biosynthesis of dolichol, dolichyl phosphate and isoprenoid pyrophosphate. This effect is observed in all intra-erythrocytic stages of the parasite life cycle, but is most pronounced in the ring stage. N-linked glycosylation of proteins was inhibited in the ring and young-trophozoite stages after mevastatin treatment of parasite cultures. Therefore the isoprenoid pathway may represent a different approach to the development of new anti-malarial drugs.
Journal of Biological Chemistry | 2009
Renata Tonhosolo; Fabio L. D'Alexandri; Veridiana Vera de Rosso; Marcos L. Gazarini; Miriam Y. Matsumura; Valnice J. Peres; Emilio F. Merino; Jane M. Carlton; Gerhard Wunderlich; Adriana Zerlotti Mercadante; Emilia A. Kimura; Alejandro M. Katzin
Carotenoids are widespread lipophilic pigments synthesized by all photosynthetic organisms and some nonphotosynthetic fungi and bacteria. All carotenoids are derived from the C40 isoprenoid precursor geranylgeranyl pyrophosphate, and their chemical and physical properties are associated with light absorption, free radical scavenging, and antioxidant activity. Carotenoids are generally synthesized in well defined subcellular organelles, the plastids, which are also present in the phylum Apicomplexa, which comprises a number of important human parasites, such as Plasmodium and Toxoplasma. Recently, it was demonstrated that Toxoplasma gondii synthesizes abscisic acid. We therefore asked if Plasmodium falciparum is also capable of synthesizing carotenoids. Herein, biochemical findings demonstrated the presence of carotenoid biosynthesis in the intraerythrocytic stages of the apicomplexan parasite P. falciparum. Using metabolic labeling with radioisotopes, in vitro inhibition tests with norflurazon, a specific inhibitor of plant carotenoid biosynthesis, the results showed that intraerythrocytic stages of P. falciparum synthesize carotenoid compounds. A plasmodial enzyme that presented phytoene synthase activity was also identified and characterized. These findings not only contribute to the current understanding of P. falciparum evolution but shed light on a pathway that could serve as a chemotherapeutic target.
Biochemical Journal | 2005
Renata Tonhosolo; Fabio L. D'Alexandri; Fernando A. Genta; Gerhard Wunderlich; Fabio C. Gozzo; Marcos N. Eberlin; Valnice J. Peres; Emilia A. Kimura; Alejandro M. Katzin
Isoprenoids play important roles in all living organisms as components of structural cholesterol, steroid hormones in mammals, carotenoids in plants, and ubiquinones. Significant differences occur in the length of the isoprenic side chains of ubiquinone between different organisms, suggesting that different enzymes are involved in the synthesis of these side chains. Whereas in Plasmodium falciparum the isoprenic side chains of ubiquinone contain 7-9 isoprenic units, 10-unit side chains are found in humans. In a search for the P. falciparum enzyme responsible for the biosynthesis of isoprenic side chains attached to the benzoquinone ring of ubiquinones, we cloned and expressed a putative polyprenyl synthase. Polyclonal antibodies raised against the corresponding recombinant protein confirmed the presence of the native protein in trophozoite and schizont stages of P. falciparum. The recombinant protein, as well as P. falciparum extracts, showed an octaprenyl pyrophosphate synthase activity, with the formation of a polyisoprenoid with eight isoprenic units, as detected by reverse-phase HPLC and reverse-phase TLC, and confirmed by electrospray ionization and tandem MS analysis. The recombinant and native versions of the enzyme had similar Michaelis constants with the substrates isopentenyl pyrophosphate and farnesyl pyrophosphate. The recombinant enzyme could be competitively inhibited in the presence of the terpene nerolidol. This is the first report that directly demonstrates an octaprenyl pyrophosphate synthase activity in parasitic protozoa. Given the rather low similarity of the P. falciparum enzyme to its human counterpart, decaprenyl pyrophosphate synthase, we suggest that the identified enzyme and its recombinant version could be exploited in the screening of novel drugs.
Annals of Tropical Medicine and Parasitology | 1998
Marcelo U. Ferreira; Emilia A. Kimura; Alejandro M. Katzin; L. L. Santos-Neto; J. O. Ferrari; J. M. Villalobos; M. E. de Carvalho
A critical role has been proposed for the switch from non-cytophilic IgG2 to cytophilic antibodies of IgG1 and IgG3 subclasses observed in the humoral immune responses to Plasmodium falciparum of some Africans. These Africans have acquired clinically immunity naturally, after several years of exposure to holo-endemic malaria. In the present study, the possibility that life-long exposure to low levels of malarial endemicity may be associated with changes in the IgG-subclass composition of antibodies to P. falciparum was investigated in a native Amazonian community. The subjects were 138 malaria-exposed but non-infected Karitiana Indians. In a separate investigation, the concentrations of IgG-subclass antibodies in acutely ill patients with severe malaria (N = 22) were compared with those in age- and sex-matched controls who had uncomplicated malaria (N = 44). Plasma concentrations of IgG against a detergent-soluble extract of P. falciparum schizonts were measured by quantitative ELISA, using indirect standardization. Among the Karitiana, the concentrations of anti-parasite antibodies of all subclasses increased with age, and there was no correlation between age and the proportion of such antibodies which was cytophilic. The predominance of cytophilic IgG1 and non-cytophilic IgG2 antibodies in all age-groups of the Karitiana provides an example of an intermediate pattern of immune responses to P. falciparum which contrasts with those previously described in both clinically immune and non-immune populations. Although mean concentrations of cytophilic IgG1 against P. falciparum were significantly higher in the controls than in the patients with severe malaria, there were no significant differences in other IgG subclasses. Lack of exposure to malaria in the past was associated with disease severity (odds ratio = 4.75; 95% confidence interval = 1.31-17.42), and may explain, at least partially, the occurrence of defective, low-IgG1 antibody responses to P. falciparum in those subjects who had severe malaria.
FEBS Letters | 2010
Rodrigo A.C. Sussmann; Claudia B. Angeli; Valnice J. Peres; Emilia A. Kimura; Alejandro M. Katzin
Herein, we show that intraerythrocytic stages of Plasmodium falciparum have an active pathway for biosynthesis of menaquinone. Kinetic assays confirmed that plasmodial menaquinone acts at least in the electron transport. Similarly to Escherichia coli, we observed increased levels of menaquinone in parasites kept under anaerobic conditions. Additionally, the mycobacterial inhibitor of menaquinone synthesis Ro 48‐8071 also suppressed menaquinone biosynthesis and growth of parasites, although off‐targets may play a role in this growth‐inhibitory effect. Due to its absence in humans, the menaquinone biosynthesis can be considered an important drug target for malaria.
FEBS Letters | 2006
Fabio L. D'Alexandri; Emilia A. Kimura; Valnice J. Peres; Alejandro M. Katzin
We performed reverse‐phase thin‐layer chromatography and reverse‐phase high‐performance liquid chromatography (RP‐HPLC) analysis of polyisoprenoids released by sulfonium‐salt cleavage with methyl iodide from Plasmodium falciparum proteins labeled with [3H]FPP or [3H]GGPP and showed that a dolichol of 11 isoprene units is bound to 21–28‐kDa protein clusters from trophozoite and schizont stages. The dolichol structure was confirmed by electrospray‐ionization mass spectrometry analysis. Treatment with protein synthesis inhibitors and RP‐HPLC analysis of the proteolytic digestion products from parasite proteins labeled with [35S]cysteine and [3H]FPP showed that the attachment of dolichol to protein is a post‐translational event and probably occurs via a covalent bond to cysteine residues.
Antimicrobial Agents and Chemotherapy | 2011
Fabiana Morandi Jordão; Alexandre Y. Saito; Danilo C. Miguel; Valnice J. Peres; Emilia A. Kimura; Alejandro M. Katzin
ABSTRACT The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC50] of 20.3 ± 1.0 μM). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.
Memorias Do Instituto Oswaldo Cruz | 2007
Maria B. Cassera; Emilio F. Merino; Valnice J. Peres; Emilia A. Kimura; Gerhard Wunderlich; Alejandro M. Katzin
In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
Memorias Do Instituto Oswaldo Cruz | 2011
Fabiana Morandi Jordão; Emilia A. Kimura; Alejandro M. Katzin
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasites survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.