Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilia Vassileva is active.

Publication


Featured researches published by Emilia Vassileva.


Analytica Chimica Acta | 2015

Determination of methylmercury in marine sediment samples: Method validation and occurrence data

Luis Carrasco; Emilia Vassileva

The determination of methylmercury (MeHg) in sediment samples is a difficult task due to the extremely low MeHg/THg (total mercury) ratio and species interconversion. Here, we present the method validation of a cost-effective fit-for-purpose analytical procedure for the measurement of MeHg in sediments, which is based on aqueous phase ethylation, followed by purge and trap and hyphenated gas chromatography-pyrolysis-atomic fluorescence spectrometry (GC-Py-AFS) separation and detection. Four different extraction techniques, namely acid and alkaline leaching followed by solvent extraction and evaporation, microwave-assisted extraction with 2-mercaptoethanol, and acid leaching, solvent extraction and back extraction into sodium thiosulfate, were examined regarding their potential to selectively extract MeHg from estuarine sediment IAEA-405 certified reference material (CRM). The procedure based on acid leaching with HNO3/CuSO4, solvent extraction and back extraction into Na2S2O3 yielded the highest extraction recovery, i.e., 94±3% and offered the possibility to perform the extraction of a large number of samples in a short time, by eliminating the evaporation step. The artifact formation of MeHg was evaluated by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS), using isotopically enriched Me(201)Hg and (202)Hg and it was found to be nonexistent. A full validation approach in line with ISO 17025 and Eurachem guidelines was followed. With this in mind, blanks, selectivity, working range (1-800 pg), linearity (0.9995), recovery (94-96%), repeatability (3%), intermediate precision (4%), limit of detection (0.45 pg) and limit of quantification (0.85 pg) were systematically assessed with CRM IAEA-405. The uncertainty budget was calculated and the major contribution to the combined uncertainty (16.24%, k=2) was found to arise from the uncertainty associated with recovery (74.1%). Demonstration of traceability of measurement results is also presented. The validated measurement procedure was applied to the determination of MeHg incurred in sediments from a highly polluted and scarcely studied area in the Caribbean region.


Analytica Chimica Acta | 2011

Determination of the total and extractable mass fractions of cadmium and lead in mineral feed by using isotope dilution inductively coupled plasma mass spectrometry

Emilia Vassileva; Michel Hoenig

This paper describes the determination of the total and extractable mass fractions of Cd and Pb in mineral feed test sample distributed by the Community Reference Laboratory for Heavy Metals in Feed and Food (CRL-HM), in the frame of the fifth interlaboratory comparison for the European Union National Reference Laboratories (NRL). The developed in this study protocol for the total and extractable mass fractions of Pb and Cd in mineral feed sample is based on isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The applied dual spiking approach reduced by 50% the number of analytical steps. The addition of hydrofluoric acid in the digestion step was found necessary to ensure a full decomposition and complete isotope equilibration. Quadrupole inductively coupled plasma mass spectrometer equipped with collision reaction interface (CRI) was employed for the measurements of Cd and Pb. Two methods for the determination of Cd were applied and compared. In the first one the high molybdenum content was reduced by introduction of matrix separation step followed by standard ICP-MS mode measurement, whereas in the second one CRI mode was used for the determination of Cd without preliminary matrix separation. The estimation of the combined uncertainty was performed according to the ISO guidelines. Uncertainty propagation was used as a tool for validation of proposed analytical procedure. Contributions from the correction for moisture content, sample homogeneity, procedural blank, instrumental background and dead time effects were evaluated in both cases. The largest uncertainty contributors for Cd and Pb is due to the within bottle homogeneity of the mineral feed sample - 50.3% and 90% respectively. The IUPAC data for isotope composition are the second major contributor to the combined uncertainty of the result for the total mass fraction of Cd in mineral feed - 43.3%. However, the ID ICP-MS results achieved from the two series of samples (partial and total extraction) were in excellent agreement within uncertainty, irrespective of the method used for extraction. The ID ICP-MS results for the total and extractable mass fractions of Cd and Pb in feed sample were compared with the results obtained with external calibration approach and routinely applied in the daily analytical practice of the Belgium National Reference Laboratory for trace elements in food and feed.


Spectrochimica Acta Part B: Atomic Spectroscopy | 2003

Certification of the Cu and Cd amount contents in artificial food digest using isotope dilution inductively coupled plasma mass spectrometry for Pilot Study 13 of the Comité Consultatif pour la Quantité de Matière

Emilia Vassileva; Christophe R. Quétel; I. Petrov

Abstract The Comite Consultatif pour la Quantite de Matiere (CCQM) launched the Pilot Study 13, an interlaboratory comparison between the metrological organizations worldwide on the determination of Ca, Cu and Cd in artificial food digests. These samples (available in 7% HNO3 and with a salinity evaluated around 370 mg kg−1, including approx. 30 mg Na kg−1) were prepared by gravimetrical mixing, and thus reference values traceable to the Kg for the three elements were available eventually. This paper describes the contribution of IRMM for the certification of the Cu and the Cd amount contents. The analytical protocol developed was based on isotope dilution associated to inductively coupled plasma mass spectrometry (ID-ICP-MS). The Cu measurements required 125-fold dilution of the initial sample solution. An interference of 23Na40Ar+ on 63Cu+ was identified but, since the ratio between both species was over 1000, it was successfully overcome by the calculation of a correction factor for its effect on the Cu amount content directly. Dilution of the sample was not possible for Cd only present at the low ng g−1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This is rarely shown. As similar results could be obtained either way after the necessary corrections, the direct measurements approach associated to a correction for mass discrimination effects using the CCQM-P13 sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. SI traceable values were obtained for Cu and Cd with less than 1 and 1.5% combined uncertainty, respectively (6 995±55 (k=2) nmol kg−1 and 45.53±0.64 (k=2) nmol kg−1). The excellent agreement between these results and the reference values (less than 0.6 and 0.08% difference) further validated the analytical protocols developed.


Talanta | 2014

Determination of methylmercury in marine biota samples: Method validation

Luis Carrasco; Emilia Vassileva

Regulatory authorities are expected to measure concentration of contaminants in foodstuffs, but the simple determination of total amount cannot be sufficient for fully judging its impact on the human health. In particular, the methylation of metals generally increases their toxicity; therefore validated analytical methods producing reliable results for the assessment of methylated species are highly needed. Nowadays, there is no legal limit for methylmercury (MeHg) in food matrices. Hence, no standardized method for the determination of MeHg exists within the international jurisdiction. Contemplating the possibility of a future legislative limit, a method for low level determination of MeHg in marine biota matrixes, based on aqueous-phase ethylation followed by purge and trap and gas chromatography (GC) coupled to pyrolysis-atomic fluorescence spectrometry (Py-AFS) detection, has been developed and validated. Five different extraction procedures, namely acid and alkaline leaching assisted by microwave and conventional oven heating, as well as enzymatic digestion, were evaluated in terms of their efficiency to extract MeHg from Scallop soft tissue IAEA-452 Certified Reference Material. Alkaline extraction with 25% (w/w) KOH in methanol, microwave-assisted extraction (MAE) with 5M HCl and enzymatic digestion with protease XIV yielded the highest extraction recoveries. Standard addition or the introduction of a dilution step were successfully applied to overcome the matrix effects observed when microwave-assisted extraction using 25% (w/w) KOH in methanol or 25% (w/v) aqueous TMAH were used. ISO 17025 and Eurachem guidelines were followed to perform the validation of the methodology. Accordingly, blanks, selectivity, calibration curve, linearity (0.9995), working range (1-800pg), recovery (97%), precision, traceability, limit of detection (0.45pg), limit of quantification (0.85pg) and expanded uncertainty (15.86%, k=2) were assessed with Fish protein Dorm-3 Certified Reference Material. The major contributions to the expanded uncertainty, i.e. 86.1%, arose from the uncertainty associated with recovery, followed by the contribution from fluorescence signal. Additional validation of the methodology developed was effectuated by the comparison with the values reported for MeHg in the IAEA-452 inter-laboratory comparison exercise.


Food Chemistry | 2015

Determination of methylmercury in marine biota samples with advanced mercury analyzer: Method validation

Sabine Azemard; Emilia Vassileva

In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises.


Talanta | 2016

Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry

Agnieszka Krata; Emilia Vassileva; Ewa Bulska

The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the case of clam sample, the concentration of MeHg (as Hg) was found to be: 61.0 (2.3) 10(-)(9)kgkg(-1) (U=3.8%, k=2) and 61.3 (2.2) 10(-)(9)kgkg(-1) (U=3.6%, k=2), respectively. The mass fractions for total Hg and MeHg determined in this study were used as a contribution of the International Atomic Energy Agency (IAEA) Environment Laboratories in the characterisation of the IAEA 461 and IAEA 470 certified reference materials. The obtained good agreement with the reference values further validated the methods developed in this study.


International Journal of Environmental Analytical Chemistry | 2017

Determination of selected trace elements in marine biota samples with the application of fast temperature programs and solid sampling continuous source high resolution atomic absorption spectroscopy: method validation

Anna Maria Orani; Petko Mandjukov; Emilia Vassileva

ABSTRACT Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine biota samples using solid sampling high-resolution continuum source atomic absorption spectrometry (HR CS AAS) and accelerated fast temperature programmes has been developed. Calibration technique based on the use of solid certified reference materials similar to the nature of the analysed sample and statistics of regression analysis were applied. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability and reproducibility, limits of detection and quantification and expanded uncertainty for all investigated elements were assessed. The major contributors to the combined uncertainty of the analyte mass fractions were found to be the homogeneity of the samples and the microbalance precision. Traceability to the SI system of units of the obtained with the proposed analytical procedure results was also demonstrated. The potential of the proposed analytical procedure based on solid sampling HR CS AAS technique was demonstrated by direct analysis of marine reference biota samples. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of selected trace elements in marine biota samples, such as straightforward calibration, a high sample throughput, sufficient precision, a suitable limit of detection and reduced risk of analyte loss and contamination.


Marine Pollution Bulletin | 2018

Baseline study on trace and rare earth elements in marine sediments collected along the Namibian coast

Anna Maria Orani; Emilia Vassileva; Irena Wysocka; Michael Angelidis; Martina Rozmaric; Deon C. Louw

Namibia is a fast-growing country with extensive mineral extraction activities used in diamond, fluorspar, uranium, and metals production. To assess the impact of land based human activities on the Namibian coastal marine environment, 25 elements were analyzed in 22 surface sediments samples collected along the coast. After applying a variety of pollution assessment indices (Enrichment Factor, Igeo and Pollution Load Indexes) was concluded that As, Cd and Sb were considerably enriched in the sediments from several sites, while Cu, Pb and Zn showed very high enrichment near the Walvis Bay harbor. Pearsons correlation and Principal Component Analysis were used to investigate common metal sources. Additionally, the determination of Pb isotope ratios confirmed the contribution of land based human activities at Walvis Bay and Lüderitz as sources of pollution. The analysis of REEs did not reveal any important enrichment due to anthropogenic activities, but provides a needed baseline for further investigations.


Marine Pollution Bulletin | 2018

Marine sponges as a powerful tool for trace elements biomonitoring studies in coastal environment

Anna Maria Orani; Aurélie Barats; Emilia Vassileva; O. Thomas

In this work, we performed a comparative study on six marine sponge species collected along the French Mediterranean and Irish coasts for their TEs accumulation. Intra and inter-species variabilities were examined. Among the Mediterranean species, Cymbaxinella damicornis accumulates significantly more As and Cu than others sponge species; Chondrilla nucula more Ni and Mo and Acanthella acuta more Ag. Among Irish samples, Hymeniacidon perlevis showed higher accumulation properties for most of TEs in comparison to Halichondria panicea. Bioconcentration Factors were > 1 in all species for most of TEs. This study suggests that TEs bioaccumulation is most likely associated to differences in morphological features and/or to specific bacterial communities associated to different species. The determination of Pb isotope ratios revealed mainly natural Pb sources for Mediterranean and Kilkieran Bays samples, and rather anthropogenic influence for Belfast samples. This study confirms that sponges represent a powerful tool for biomonitoring studies.


Accreditation and Quality Assurance | 2018

Certification for trace elements and methyl mercury mass fractions in IAEA-456 marine sediment sample

Emilia Vassileva; Sabine Azemard; Petko Mandjukov

Marine sediment certified reference material (CRM), IAEA-456 was recently produced by the Environment Laboratories of the International Atomic Energy Agency (IAEA) and certified for trace elements and methyl mercury (CH3Hg). This paper presents the sample preparation methodology, material homogeneity and stability studies, evaluation of results from the characterisation campaign, the assignment of property values and their associated uncertainty. The reference values and associated expanded uncertainty for nine trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) and CH3Hg in marine sediment sample are established. The new CRM can be used for the development and validation of analytical methods, for the determination of trace elements and methyl mercury in sediments and also for quality assurance/quality control purposes.

Collaboration


Dive into the Emilia Vassileva's collaboration.

Top Co-Authors

Avatar

Irena Wysocka

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Maria Orani

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Eunmi Han

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Petko Mandjukov

South-West University "Neofit Rilski"

View shared research outputs
Top Co-Authors

Avatar

Luis Carrasco

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Petko Mandjukov

South-West University "Neofit Rilski"

View shared research outputs
Top Co-Authors

Avatar

Sabine Azemard

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge