Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie A. Hardouin is active.

Publication


Featured researches published by Emilie A. Hardouin.


Molecular Ecology | 2013

The role of biogeography in shaping diversity of the intestinal microbiota in house mice

Miriam Linnenbrink; Jun Wang; Emilie A. Hardouin; Sven Künzel; Dirk Metzler; John F. Baines

The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)‐associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa‐associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.


PLOS ONE | 2008

Positive Selection in East Asians for an EDAR Allele that Enhances NF-κB Activation

Jarosław Bryk; Emilie A. Hardouin; Irina Pugach; David A. Hughes; Rainer Strotmann; Mark Stoneking; Sean Myles

Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-κB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype.


BMC Evolutionary Biology | 2010

House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion

Emilie A. Hardouin; Jean-Louis Chapuis; Mark I. Stevens; Jansen Bettine van Vuuren; Rick J. Scavetta; Meike Teschke; Diethard Tautz

BackgroundStarting from Western Europe, the house mouse (Mus musculus domesticus) has spread across the globe in historic times. However, most oceanic islands were colonized by mice only within the past 300 years. This makes them an excellent model for studying the evolutionary processes during early stages of new colonization. We have focused here on the Kerguelen Archipelago, located within the sub-Antarctic area and compare the patterns with samples from other Southern Ocean islands.ResultsWe have typed 18 autosomal and six Y-chromosomal microsatellite loci and obtained mitochondrial D-loop sequences for a total of 534 samples, mainly from the Kerguelen Archipelago, but also from the Falkland Islands, Marion Island, Amsterdam Island, Antipodes Island, Macquarie Island, Auckland Islands and one sample from South Georgia. We find that most of the mice on the Kerguelen Archipelago have the same mitochondrial haplotype and all share the same major Y-chromosomal haplotype. Two small islands (Cochons Island and Cimetière Island) within the archipelago show a different mitochondrial haplotype, are genetically distinct for autosomal loci, but share the major Y-chromosomal haplotype. In the mitochondrial D-loop sequences, we find several single step mutational derivatives of one of the major mitochondrial haplotypes, suggesting an unusually high mutation rate, or the occurrence of selective sweeps in mitochondria.ConclusionsAlthough there was heavy ship traffic for over a hundred years to the Kerguelen Archipelago, it appears that the mice that have arrived first have colonized the main island (Grande Terre) and most of the associated small islands. The second invasion that we see in our data has occurred on islands that are detached from Grande Terre and were likely to have had no resident mice prior to their arrival. The genetic data suggest that the mice of both primary invasions originated from related source populations. Our data suggest that an area colonized by mice is refractory to further introgression, possibly due to fast adaptations of the resident mice to local conditions.


BMC Medical Genetics | 2011

Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans

Sean Myles; Rodney Arthur Lea; Jun Ohashi; Geoff Chambers; Joerg G Weiss; Emilie A. Hardouin; Johannes Engelken; Donia Macartney-Coxson; David Eccles; Izumi Naka; Ryosuke Kimura; Tsukasa Inaoka; Yasuhiro Matsumura; Mark Stoneking

BackgroundThe thrifty gene hypothesis posits that, in populations that experienced periods of feast and famine, natural selection favoured individuals carrying thrifty alleles that promote the storage of fat and energy. Polynesians likely experienced long periods of cold stress and starvation during their settlement of the Pacific and today have high rates of obesity and type 2 diabetes (T2DM), possibly due to past positive selection for thrifty alleles. Alternatively, T2DM risk alleles may simply have drifted to high frequency in Polynesians. To identify thrifty alleles in Polynesians, we previously examined evidence of positive selection on T2DM-associated SNPs and identified a T2DM risk allele at unusually high frequency in Polynesians. We suggested that the risk allele of the Gly482Ser variant in the PPARGC1A gene was driven to high frequency in Polynesians by positive selection and therefore possibly represented a thrifty allele in the Pacific.MethodsHere we examine whether PPARGC1A is a thrifty gene in Pacific populations by testing for an association between Gly482Ser genotypes and BMI in two Pacific populations (Maori and Tongans) and by evaluating the frequency of the risk allele of the Gly482Ser variant in a sample of worldwide populations.ResultsWe find that the Gly482Ser variant is associated with BMI in Tongans but not in Maori. In a sample of 58 populations worldwide, we also show that the 482Ser risk allele reaches its highest frequency in the Pacific.ConclusionThe association between Gly482Ser genotypes and BMI in Tongans together with the worldwide frequency distribution of the Gly482Ser risk allele suggests that PPARGC1A remains a candidate thrifty gene in Pacific populations.


BMC Evolutionary Biology | 2015

Eurasian house mouse (Mus musculus L.) differentiation at microsatellite loci identifies the Iranian plateau as a phylogeographic hotspot

Emilie A. Hardouin; Annie Orth; Meike Teschke; Jamshid Darvish; Diethard Tautz; François Bonhomme

BackgroundThe phylogeography of the house mouse (Mus musculus L.), an emblematic species for genetic and biomedical studies, is only partly understood, essentially because of a sampling bias towards its most peripheral populations in Europe, Asia and the Americas. Moreover, the present-day phylogeographic hypotheses stem mostly from the study of mitochondrial lineages. In this article, we complement the mtDNA studies with a comprehensive survey of nuclear markers (19 microsatellite loci) typed in 963 individuals from 47 population samples, with an emphasis on the putative Middle-Eastern centre of dispersal of the species.ResultsBased on correspondence analysis, distance and allele-sharing trees, we find a good coherence between geographical origin and genetic make-up of the populations. We thus confirm the clear distinction of the three best described peripheral subspecies, M. m. musculus, M. m. domesticus and M. m. castaneus. A large diversity was found in the Iranian populations, which have had an unclear taxonomic status to date. In addition to samples with clear affiliation to M. m. musculus and M. m. domesticus, we find two genetic groups in Central and South East Iran, which are as distinct from each other as they are from the south-east Asian M. m. castaneus. These groups were previously also found to harbor distinct mitochondrial haplotypes.ConclusionWe propose that the Iranian plateau is home to two more taxonomic units displaying complex primary and secondary relationships with their long recognized neighbours. This central region emerges as the area with the highest known diversity of mouse lineages within a restricted geographical area, designating it as the focal place to study the mechanisms of speciation and diversification of this species.


Journal of Evolutionary Biology | 2013

Invasive house mice facing a changing environment on the Sub-Antarctic Guillou Island (Kerguelen Archipelago)

Sabrina Renaud; Emilie A. Hardouin; Benoit Pisanu; Jean-Louis Chapuis

Adaptation to new environments is a key feature in evolution promoting divergence in morphological structures under selection. The house mouse (Mus musculus domesticus) introduced on the Sub‐Antarctic Guillou Island (Kerguelen Archipelago) had and still has to face environmental conditions that likely shaped the pattern and pace of its insular evolution. Since mouse arrival on the island, probably not more than two centuries ago, ecological conditions dramatically differed from those available to their Western European commensal source populations. In addition, over the last two decades, the plant and animal communities of Guillou Island were considerably modified by the eradication of rabbits, the effects of climate change and the spread of invasive species detrimental to native communities. Under such a changing habitat, the mouse response was investigated using a morphometric quantification of mandible and molar tooth, two morphological structures related to food processing. A marked differentiation of the insular mice compared with their relatives from Western Europe was documented for both mandibles and molar shapes. Moreover, these shapes changed through the 16 years of the record, in agreement with expectations of drift for the molar, but more than expected by chance for the mandible. These results suggest that mice responded to the recent changes in food resources, possibly with a part of plastic variation for the mandible prone to bone remodelling. This pattern exemplifies the intricate interplay of evolution, ecology and plasticity that is a probable key of the success of such an invasive rodent facing pronounced shifts in food resources exploitation under a changing environment.


Proceedings of the Royal Society B: Biological Sciences | 2016

Phylogeny and adaptation shape the teeth of insular mice.

Ronan Ledevin; Pascale Chevret; Guila Ganem; Janice Britton-Davidian; Emilie A. Hardouin; Jean-Louis Chapuis; Benoit Pisanu; Maria da Luz Mathias; Stefan Schlager; Jean-Christophe Auffray; Sabrina Renaud

By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation.


PLOS ONE | 2015

Once upon Multivariate Analyses: When They Tell Several Stories about Biological Evolution

Sabrina Renaud; Anne-Béatrice Dufour; Emilie A. Hardouin; Ronan Ledevin; Jean-Christophe Auffray

Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing ‘better’ than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.


Biology Letters | 2013

Increased mitochondrial mutation frequency after an island colonization: positive selection or accumulation of slightly deleterious mutations?

Emilie A. Hardouin; Diethard Tautz

Island colonizations are excellent models for studying early processes of evolution. We found in a previous study on mice that had colonized the sub-Antarctic Kerguelen Archipelago about 200 years ago that they were derived from a single founder lineage and that this showed an unexpectedly large number of new mutations in the mitochondrial D-loop. To assess whether positive selection has played a role in the emergence of these variants, we have obtained 16 full mitochondrial genome sequences from these mice. For comparison, we have compiled 57 mitochondrial genome sequences from laboratory inbred lines that became established about 100 years ago, also starting from a single founder lineage. We find that the island mice and the laboratory lines show very similar mutation frequencies and patterns. None of the patterns in the Kerguelen mice provides evidence for positive selection. We conclude that nearly neutral evolutionary processes that assume the presence of slightly deleterious variants can fully explain the patterns. This supports the notion of time-dependency of molecular evolution and provides a new calibration point. Based on the observed mutation frequency, we calculate an average evolutionary rate of 0.23 substitutions per site per Myr for the earliest time frame of divergence, which is about six times higher than the long-term rate of 0.037 substitutions per site per Myr.


Emerging microbes & infections | 2017

Origin and invasion of the emerging infectious pathogen Sphaerothecum destruens

Salma Sana; Emilie A. Hardouin; Rodolphe E. Gozlan; Didem Ercan; Ali Serhan Tarkan; Tiantian Zhang; Demetra Andreou

Non-native species are often linked to the introduction of novel pathogens with detrimental effects on native biodiversity. Since Sphaerothecum destruens was first discovered as a fish pathogen in the United Kingdom, it has been identified as a potential threat to European fish biodiversity. Despite this parasite’s emergence and associated disease risk, there is still a poor understanding of its origin in Europe. Here, we provide the first evidence to support the hypothesis that S. destruens was accidentally introduced to Europe from China along with its reservoir host Pseudorasbora parva via the aquaculture trade. This is the first study to confirm the presence of S. destruens in China, and it has expanded the confirmed range of S. destruens to additional locations in Europe. The demographic analysis of S. destruens and its host P. parva in their native and invasive range further supported the close association of both species. This research has direct significance and management implications for S. destruens in Europe as a non-native parasite.

Collaboration


Dive into the Emilie A. Hardouin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Louis Chapuis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salma Sana

Bournemouth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge