Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Barruet is active.

Publication


Featured researches published by Emilie Barruet.


Orphanet Journal of Rare Diseases | 2013

Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation

Yoshihisa Matsumoto; Yohei Hayashi; Christopher R. Schlieve; Makoto Ikeya; Hannah Kim; Trieu Nguyen; Salma Sami; Shiro Baba; Emilie Barruet; Akira Nasu; Isao Asaka; Takanobu Otsuka; Shinya Yamanaka; Bruce R. Conklin; Junya Toguchida; Edward C. Hsiao

BackgroundAbnormal activation of endochondral bone formation in soft tissues causes significant medical diseases associated with disability and pain. Hyperactive mutations in the bone morphogenetic protein (BMP) type 1 receptor ACVR1 lead to fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterized by progressive ossification in soft tissues. However, the specific cellular mechanisms are unclear. In addition, the difficulty obtaining tissue samples from FOP patients and the limitations in mouse models of FOP hamper our ability to dissect the pathogenesis of FOP.MethodsTo address these challenges and develop a “disease model in a dish”, we created human induced pluripotent stem cells (iPS cells) derived from normal and FOP dermal fibroblasts by two separate methods, retroviral integration or integration-free episomal vectors. We tested if the ability to contribute to different steps of endochondral bone formation was different in FOP vs. control iPS cells.ResultsRemarkably, FOP iPS cells showed increased mineralization and enhanced chondrogenesis in vitro. The mineralization phenotypes could be suppressed with a small-molecule inhibitor of BMP signaling, DMH1. Our results indicate that the FOP ACVR1 R206H mutation favors chondrogenesis and increases mineral deposition in vitro.ConclusionsOur findings establish a FOP disease cell model for in vitro experimentation and provide a proof-of-concept for using human iPS cell models to understand human skeletal disorders.


Journal of Biological Chemistry | 2010

Down regulation of tissue inhibitor of metalloproteinase-3 (timp-3) expression is necessary for adipocyte differentiation

Denis Bernot; Emilie Barruet; Marjorie Poggi; Bernadette Bonardo; Marie-Christine Alessi; Franck Peiretti

Matrix metalloproteinase activity is essential for proper extracellular matrix remodeling that takes place during adipose tissue formation. Four tissue inhibitors of matrix metalloproteinases (TIMPs) regulate their activity. However, the role of TIMPs in adipocyte differentiation is poorly understood. We found that the expression of all TIMPs was modified during adipocyte differentiation, but that of TIMP-3 was distinguished by its extreme down-regulation. TIMP-3 expression was closely linked to the differentiation process. Indeed, it remained low during the adipocyte differentiation but increased when cell differentiation was prevented. We identified the transcription factor Sp1 as being responsible for the regulation of TIMP-3 expression during adipocyte differentiation. Overexpression of TIMP-3 reduced adipocyte differentiation, underlining its active role in this process. TIMP-3 overexpression decreased the expression of the early and obligate key inductors of adipogenesis Krüppel-like factor 4 (Klf4), early growth response 2 (Egr2/Krox20), and CAAT/enhancer-binding protein β (C/EBPβ). Our results indicate that during preadipocyte differentiation, the Sp1-dependent decrease in TIMP-3 expression is required for the successful implementation of the adipocyte differentiation program.


Stem Cells and Development | 2011

p38 Mitogen Activated Protein Kinase Controls Two Successive-Steps During the Early Mesodermal Commitment of Embryonic Stem Cells

Emilie Barruet; Ola Hadadeh; Franck Peiretti; Valérie M. Renault; Yasmine Hadjal; Denis Bernot; Roselyne Tournaire; Didier Nègre; Irène Juhan-Vague; Marie-Christine Alessi; Bernard Binétruy

Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages. Reexpression of p38MAPK in these cells partially rescues their mesodermal differentiation defects and corrects the high level of spontaneous neurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPK-specific inhibitor during the differentiation process. These experiments allowed us to identify 2 early independent successive p38MAPK functions in the formation of mesodermal lineages. Further, the first one correlates with the regulation of the expression of Brachyury, an essential mesodermal-specific transcription factor, by p38MAPK. In conclusion, by genetic and biochemical approaches, we demonstrate that p38MAPK activity is essential for the commitment of ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermal lineages.


Cell Death and Disease | 2013

A p38mapk-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells

Yasmine Hadjal; Ola Hadadeh; CEl Yazidi; Emilie Barruet; Bernard Binétruy

Embryonic stem cells (ESCs) differentiate in vivo and in vitro into all cell lineages, and they have been proposed as cellular therapy for human diseases. However, the molecular mechanisms controlling ESC commitment toward specific lineages need to be specified. We previously found that the p38 mitogen-activated protein kinase (p38MAPK) pathway inhibits neurogenesis and is necessary to mesodermal formation during the critical first 5 days of mouse ESC commitment. This period corresponds to the expression of specific master genes that direct ESC into each of the three embryonic layers. By both chemical and genetic approaches, we found now that, during this phase, the p38MAPK pathway stabilizes the p53 protein level and that interfering directly with p53 mimics the effects of p38MAPK inhibition on ESC differentiation. Anti-p53 siRNA transient transfections stimulate Bcl2 and Pax6 gene expressions, leading to increased ESC neurogenesis compared with control transfections. Conversely, p53 downregulation leads to a strong inhibition of the mesodermal master genes Brachyury and Mesp1 affecting cardiomyogenesis and skeletal myogenesis of ESCs. Similar results were found with p53−/− ESCs compared with their wild-type counterparts. In addition, knockout p53 ESCs show impaired smooth muscle cell and adipocyte formation. Use of anti-Nanog siRNAs demonstrates that certain of these regulations result partially to p53-dependent repression of Nanog gene expression. In addition to its well-known role in DNA-damage response, apoptosis, cell cycle control and tumor suppression, p53 has also been involved in vivo in embryonic development; our results show now that p53 mediates, at least for a large part, the p38MAPK control of the early commitment of ESCs toward mesodermal and neural lineages.


Stem Cell Research & Therapy | 2016

The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling.

Emilie Barruet; Blanca M. Morales; Wint Lwin; Mark P. White; Christina V. Theodoris; Hannah Kim; Ashley Urrutia; Sarah Anne Wong; Deepak Srivastava; Edward C. Hsiao

BackgroundThe Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways, as in conditions of congenital heterotopic ossification, are thought to activate an osteogenic program in endothelial cells. However, if and how this occurs in human endothelial cells remains unclear.MethodsWe used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP), a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand, and tested for their ability to activate osteogenesis, extracellular matrix production, and differential downstream signaling in the BMP/Activin A pathways.ResultsWe found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining, suggesting formation of immature osteoblasts, but failed to show mature osteoblastic features. However, FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs, suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally, FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs, FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation, suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition, we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs, which could explain the cell type-specific SMAD signaling.ConclusionsOur results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction, increase expression of fibrogenic matrix proteins, and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification.


PLOS ONE | 2012

The Plasminogen Activation System Modulates Differently Adipogenesis and Myogenesis of Embryonic Stem Cells

Ola Hadadeh; Emilie Barruet; Franck Peiretti; Monique Verdier; Denis Bernot; Yasmine Hadjal; Claire El Yazidi; Andrée Robaglia-Schlupp; André Maues de Paula; Didier Nègre; Michelina Iacovino; Michael Kyba; Marie Christine Alessi; Bernard Binétruy

Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1−/− induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.


Methods of Molecular Biology | 2014

Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

Emilie Barruet; Edward C. Hsiao

Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.


Stem Cells Translational Medicine | 2014

Efficient and Cost-Effective Generation of Mature Neurons From Human Induced Pluripotent Stem Cells

Cherif Badja; Galyna Maleeva; Claire El-Yazidi; Emilie Barruet; Manon Lasserre; Philippe Tropel; Bernard Binétruy; Piotr Bregestovski; Frédérique Magdinier

For years, our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanakas group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular, much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time‐consuming and generate limited amounts of cells, hindering use on a large scale. We describe a feeder‐free method relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. Four days after induction, expression of markers of the neurectoderm lineage is detectable. Between 4 and 7 days, neuronal precursors can be expanded, frozen, and thawed without loss of proliferation and differentiation capacities or further differentiated. Terminal differentiation into the different subtypes of mature neurons found in the human brain were observed. At 6–35 days after induction, cells express typical voltage‐gated and ionotrophic receptors for GABA, glycine, and acetylcholine. This specific and efficient single‐step strategy in a chemically defined medium allows the production of mature neurons in 20–40 days with multiple applications, especially for modeling human pathologies.


Bone | 2017

Application of human induced pluripotent stem cells to model fibrodysplasia ossificans progressiva

Emilie Barruet; Edward C. Hsiao

Fibrodysplasia ossificans progressiva (FOP) is a genetic condition characterized by massive heterotopic ossification. FOP patients have mutations in the Activin A type I receptor (ACVR1), a bone morphogenetic protein (BMP) receptor. FOP is a progressive and debilitating disease characterized by bone formation flares that often occur after trauma. Since it is often difficult or impossible to obtain large amounts of tissue from human donors due to the risks of inciting more heterotopic bone formation, human induced pluripotent stem cells (hiPSCs) provide an attractive source for establishing in vitro disease models and for applications in drug screening. hiPSCs have the ability to self-renew, allowing researchers to obtain large amounts of starting material. hiPSCs also have the potential to differentiate into any cell type in the body. In this review, we discuss how the application of hiPSC technology to studying FOP has changed our perspectives on FOP disease pathogenesis. We also consider ongoing challenges and emerging opportunities for the use of human iPSCs in drug discovery and regenerative medicine.


Bone reports | 2016

Loss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization.

Corey J. Cain; Nathalie Gaborit; Wint Lwin; Emilie Barruet; Samantha Ho; Carine Bonnard; Hanan Hamamy; Mohammad Shboul; Bruno Reversade; Hülya Kayserili; Benoit G. Bruneau; Edward C. Hsiao

Cranial malformations are a significant cause of perinatal morbidity and mortality. Iroquois homeobox transcription factors (IRX) are expressed early in bone tissue formation and facilitate patterning and mineralization of the skeleton. Mice lacking Irx5 appear grossly normal, suggesting that redundancy within the Iroquois family. However, global loss of both Irx3 and Irx5 in mice leads to significant skeletal malformations and embryonic lethality from cardiac defects. Here, we study the bone-specific functions of Irx3 and Irx5 using Osx-Cre to drive osteoblast lineage–specific deletion of Irx3 in Irx5−/− mice. Although we found that the Osx-Cre transgene alone could also affect craniofacial mineralization, newborn Irx3flox/flox/Irx5−/−/Osx-Cre+ mice displayed additional mineralization defects in parietal, interparietal, and frontal bones with enlarged sutures and reduced calvarial expression of osteogenic genes. Newborn endochondral long bones were largely unaffected, but we observed marked reductions in 3–4-week old bone mineral content of Irx3flox/flox/Irx5−/−/Osx-Cre+ mice. Our findings indicate that IRX3 and IRX5 can work together to regulate mineralization of specific cranial bones. Our results also provide insight into the causes of the skeletal changes and mineralization defects seen in Hamamy syndrome patients carrying mutations in IRX5.

Collaboration


Dive into the Emilie Barruet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Bernot

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ola Hadadeh

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Yasmine Hadjal

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Hannah Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Wint Lwin

University of California

View shared research outputs
Top Co-Authors

Avatar

Didier Nègre

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marjorie Poggi

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge