Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Durieu is active.

Publication


Featured researches published by Emilie Durieu.


Journal of Medicinal Chemistry | 2012

Selectivity, Cocrystal Structures, and Neuroprotective Properties of Leucettines, a Family of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B

Tania Tahtouh; J.M. Elkins; Panagis Filippakopoulos; Meera Soundararajan; Guillaume Burgy; Emilie Durieu; Claude Cochet; Ralf S. Schmid; Donald C. Lo; Florent Delhommel; Anselm Erich Oberholzer; Laurence H. Pearl; François Carreaux; Jean Pierre Bazureau; Stefan Knapp; Laurent Meijer

DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) are implicated in the onset and development of Alzheimers disease and Down syndrome. The marine sponge alkaloid leucettamine B was recently identified as an inhibitor of DYRKs/CLKs. Synthesis of analogues (leucettines) led to an optimized product, leucettine L41. Leucettines were cocrystallized with DYRK1A, DYRK2, CLK3, PIM1, and GSK-3β. The selectivity of L41 was studied by activity and interaction assays of recombinant kinases and affinity chromatography and competition affinity assays. These approaches revealed unexpected potential secondary targets such as CK2, SLK, and the lipid kinase PIKfyve/Vac14/Fig4. L41 displayed neuroprotective effects on glutamate-induced HT22 cell death. L41 also reduced amyloid precursor protein-induced cell death in cultured rat brain slices. The unusual multitarget selectivity of leucettines may account for their neuroprotective effects. This family of kinase inhibitors deserves further optimization as potential therapeutics against neurodegenerative diseases such as Alzheimers disease.


Journal of Medicinal Chemistry | 2011

Synthesis, Protein Kinase Inhibitory Potencies, and in Vitro Antiproliferative Activities of Meridianin Derivatives

Francis Giraud; Georges Alves; Eric Debiton; Lionel Nauton; Vincent Théry; Emilie Durieu; Yoan Ferandin; Olivier Lozach; Laurent Meijer; Fabrice Anizon; Elisabeth Pereira; Pascale Moreau

The synthesis of new meridianin derivatives is described. The indolic ring system was substituted at the C-4 to C-7 positions either by a bromine atom or by nitro or amino groups. Additionally, an iodine atom or various aryl groups were introduced at the C-5 position of the 2-aminopyrimidine ring. These compounds as well as some of their synthetic intermediates were tested for their kinase inhibitory potencies and for their in vitro antiproliferative activities. We found that this series of compounds is particularly interesting in the development of new inhibitors of DYRK1A and CLK1 kinases. The most effective compounds toward these two kinase families are the 6- and 7-bromo derivatives 30, 33, and 34 that showed more than 45-fold selectivity toward DYRK1A/CLK1 kinases over the other kinases tested. Meridianin derivatives could thus be developed toward potent and selective inhibitors of key RNA splicing regulators and potential therapeutic agents.


ACS Medicinal Chemistry Letters | 2013

Novel Inverse Binding Mode of Indirubin Derivatives Yields Improved Selectivity for DYRK Kinases

Vassilios Myrianthopoulos; Marina Kritsanida; Nicolas Gaboriaud-Kolar; Prokopios Magiatis; Yoan Ferandin; Emilie Durieu; Olivier Lozach; Daniel Cappel; Meera Soundararajan; Panagis Filippakopoulos; Woody Sherman; Stefan Knapp; Laurent Meijer; Emmanuel Mikros; Alexios-Leandros Skaltsounis

DYRK kinases are involved in alternative pre-mRNA splicing as well as in neuropathological states such as Alzheimers disease and Down syndrome. In this study, we present the design, synthesis, and biological evaluation of indirubins as DYRK inhibitors with enhanced selectivity. Modifications of the bis-indole included polar or acidic functionalities at positions 5′ and 6′ and a bromine or a trifluoromethyl group at position 7, affording analogues that possess high activity and pronounced specificity. Compound 6i carrying a 5′-carboxylate moiety demonstrated the best inhibitory profile. A novel inverse binding mode, which forms the basis for the improved selectivity, was suggested by molecular modeling and confirmed by determining the crystal structure of DYRK2 in complex with 6i. Structure–activity relationships were further established, including a thermodynamic analysis of binding site water molecules, offering a structural explanation for the selective DYRK inhibition.


Bioorganic & Medicinal Chemistry Letters | 2010

Identification and structure-activity relationship of 8-hydroxy-quinoline-7-carboxylic acid derivatives as inhibitors of Pim-1 kinase.

Faten Sliman; Mélina Blairvacq; Emilie Durieu; Laurent Meijer; Jordi Rodrigo; Didier Desmaële

Pim-1 kinase is a cytoplasmic serine/threonine kinase that controls programmed cell death by phosphorylating substrates that regulate both apoptosis and cellular metabolism. A series of 2-styrylquinolines and quinoline-2-carboxamides has been identified as potent inhibitors of the Pim-1 kinase. The 8-hydroxy-quinoline 7-carboxylic acid moiety appeared to be a crucial pharmacophore for activity. Molecular modeling indicated that interaction of this scaffold with Asp186 and Lys67 residues within the ATP-binding pocket might be responsible for the kinase inhibitory potency.


Clinical Cancer Research | 2013

Inhibition of NF-κB–Mediated Signaling by the Cyclin-Dependent Kinase Inhibitor CR8 Overcomes Prosurvival Stimuli to Induce Apoptosis in Chronic Lymphocytic Leukemia Cells

Emilio Cosimo; Alison McCaig; Luke J.M. Carter-Brzezinski; Helen Wheadon; Michael T. Leach; Karine Le Ster; Christian Berthou; Emilie Durieu; Nassima Oumata; Herv e Galons; Laurent Meijer; Alison M. Michie

Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure. Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry–based assays. CLL cells were cultured in in vitro prosurvival and proproliferative conditions to mimic microenvironmental signals in the lymphoid organs, to elucidate the mechanism of action of CR8 in quiescent and proliferating CLL cells using flow cytometry, Western blotting, and quantitative real-time PCR. Results: CR8 was 100-fold more potent at inducing apoptosis in primary CLL cells than roscovitine, both in isolated culture and stromal-coculture conditions. Importantly, CR8 induced apoptosis in CD40-ligated CLL cells and preferentially targeted actively proliferating cells within these cultures. CR8 treatment induced downregulation of the antiapoptotic proteins Mcl-1 and XIAP, through inhibition of RNA polymerase II, and inhibition of NF-κB signaling at the transcriptional level and through inhibition of the inhibitor of IκB kinase (IKK) complex, resulting in stabilization of IκBα expression. Conclusions: CR8 is a potent CDK inhibitor that subverts pivotal prosurvival and proproliferative signals present in the tumor microenvironment of CLL patient lymphoid organs. Our data support the clinical development of selective CDK inhibitors as novel therapies for CLL. Clin Cancer Res; 19(9); 2393–405. ©2013 AACR.


Journal of Medicinal Chemistry | 2013

Synthesis, resolution, and biological evaluation of atropisomeric (aR)- and (aS)-16-methyllamellarins N: Unique effects of the axial chirality on the selectivity of protein kinases inhibition

Kenyu Yoshida; Ryosuke Itoyama; Masashi Yamahira; Junji Tanaka; Nadège Loaëc; Olivier Lozach; Emilie Durieu; Tsutomu Fukuda; Fumito Ishibashi; Laurent Meijer; Masatomo Iwao

The total synthesis of the optically active (aR)- and (aS)-16-methyllamellarins N (3a and 3b) was achieved via resolution on HPLC chiral stationary phase. The kinase inhibitory activities of both enantiomers were evaluated on eight protein kinases relevant to cancer and neurodegenerative diseases (CDK1/cyclin B, CDK2/cyclin A, CDK5/p25, GSK-3α/β, PIM1, DYRK1A, CLK3, and CK1). Isomer (aR)-3b exhibited potent but nonselective inhibition on all protein kinases except CK1, while (aS)-3a selectively inhibited only GSK-3α/β, PIM1, and DYRK1A. The different inhibition profiles of (aS)-3a and (aR)-3b were elucidated by docking simulation studies. Although parental lamellarin N (2) inhibited the action of topoisomerase I, both (aS)-3a and (aR)-3b showed no inhibition of this enzyme. The phenotypic cytotoxic activities of 2, (aS)-3a, and (aR)-3b on three cancer cell lines (HeLa, SH-SY5Y, and IMR32) changed according to their topoisomerase I and protein kinase inhibitory activities.


Molecular Pharmacology | 2014

cdc-like/dual-specificity tyrosine phosphorylation-regulated kinases inhibitor leucettine L41 induces mTOR-dependent autophagy: implication for Alzheimer's disease.

Xavier Fant; Emilie Durieu; Gaëtan Chicanne; Bernard Payrastre; Diego Sbrissa; Assia Shisheva; Emmanuelle Limanton; François Carreaux; Jean Pierre Bazureau; Laurent Meijer

Leucettines, a family of pharmacological inhibitors of dual-specificity tyrosine phosphorylation regulated kinases and cdc-like kinases (CLKs), are currently under investigation for their potential therapeutic application to Down syndrome and Alzheimer’s disease. We here report that leucettine L41 triggers bona fide autophagy in osteosarcoma U-2 OS cells and immortalized mouse hippocampal HT22 cells, characterized by microtubule-associated protein light chain 3 membrane translocation and foci formation. Leucettine L41–triggered autophagy requires the Unc-51–like kinase and is sensitive to the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and 3-methyladenine, suggesting that it acts through the mammalian target of rapamycin (mTOR)/PI3K-dependent pathway. Leucettine L41 does not act by modifying the autophagic flux of vesicles. Leucettine L41–induced autophagy correlates best with inhibition of CLKs. Leucettine L41 modestly inhibited phosphatidylinositol-3-phosphate 5-kinase, FYVE domain–containing activity as tested both in vitro and in vivo, which may also contribute to autophagy induction. Altogether these results demonstrate that leucettines can activate the autophagic mTOR/PI3K pathway, a characteristic that may turn advantageous in the context of Alzheimer’s disease treatment.


Antimicrobial Agents and Chemotherapy | 2014

Pharmacological Assessment Defines Leishmania donovani Casein Kinase 1 as a Drug Target and Reveals Important Functions in Parasite Viability and Intracellular Infection

Najma Rachidi; Jean François Taly; Emilie Durieu; Olivier Leclercq; Nathalie Aulner; Eric Prina; Pascale Pescher; Cedric Notredame; Laurent Meijer; Gerald F. Späth

ABSTRACT Protein kinase inhibitors have emerged as new drugs in various therapeutic areas, including leishmaniasis, an important parasitic disease. Members of the Leishmania casein kinase 1 (CK1) family represent promising therapeutic targets. Leishmania casein kinase 1 isoform 2 (CK1.2) has been identified as an exokinase capable of phosphorylating host proteins, thus exerting a potential immune-suppressive action on infected host cells. Moreover, its inhibition reduces promastigote growth. Despite these important properties, its requirement for intracellular infection and its chemical validation as a therapeutic target in the disease-relevant amastigote stage remain to be established. In this study, we used a multidisciplinary approach combining bioinformatics, biochemical, and pharmacological analyses with a macrophage infection assay to characterize and define Leishmania CK1.2 as a valid drug target. We show that recombinant and transgenic Leishmania CK1.2 (i) can phosphorylate CK1-specific substrates, (ii) is sensitive to temperature, and (iii) is susceptible to CK1-specific inhibitors. CK1.2 is constitutively expressed at both the promastigote insect stage and the vertebrate amastigote stage. We further demonstrated that reduction of CK1 activity by specific inhibitors, such as D4476, blocks promastigote growth, strongly compromises axenic amastigote viability, and decreases the number of intracellular Leishmania donovani and L. amazonensis amastigotes in infected macrophages. These results underline the potential role of CK1 kinases in intracellular survival. The identification of differences in structure and inhibition profiles compared to those of mammalian CK1 kinases opens new opportunities for Leishmania CK1.2 antileishmanial drug development. Our report provides the first chemical validation of Leishmania CK1 protein kinases, required for amastigote intracellular survival, as therapeutic targets.


European Journal of Medicinal Chemistry | 2013

Chemical synthesis and biological validation of immobilized protein kinase inhibitory Leucettines.

Guillaume Burgy; Tania Tahtouh; Emilie Durieu; Béatrice Foll-Josselin; Emmanuelle Limanton; Laurent Meijer; François Carreaux; Jean Pierre Bazureau

Leucettines, a family of marine sponge-derived 2-aminoimidazolone alkaloids, are potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). They constitute promising pharmacological leads for the treatment of several diseases, including Alzheimers disease and Down syndrome. In order to investigate the scope of potential targets of Leucettine L41, a representative member of the chemical class, we designed an affinity chromatography strategy based on agarose-immobilized leucettines. A synthesis protocol for the attachment of a polyethylene (3 or 4 units) linker to L41 was first established. The linker attachment site on L41 was selected on the basis of the co-crystal structure of L41 with several kinases. L41 was then covalently bound to agarose beads through the primary amine located at the end of the linker. Control, kinase inactive Leucettine was also immobilized, as well as free linker devoid of ligand. Extracts of several mouse tissues revealed a complex pattern of interacting proteins, some of which probably resulting from non-specific, hydrophobic binding, while others representing bona fide Leucettine-interacting proteins. DYRK1A and GSK-3 (glycogen synthase kinase-3) were confirmed as interacting targets by Western blotting in various mouse tissues. The Leucettine affinity chromatography resin constitutes a powerful tool to purify and identify the targets of this new promising therapeutic class of molecules.


Natural Product Research | 2015

Dispacamide E and other bioactive bromopyrrole alkaloids from two Indonesian marine sponges of the genus Stylissa.

Sherif S. Ebada; Mai Hoang Linh; Arlette Longeon; Nicole J. de Voogd; Emilie Durieu; Laurent Meijer; Marie-Lise Bourguet-Kondracki; Abdel Nasser B. Singab; Werner E. G. Müller; Peter Proksch

Chemical investigation of methanolic extracts of the two Indonesian marine sponges Stylissa massa and Stylissa flabelliformis yielded 25 bromopyrrole alkaloids including 2 new metabolites. The structures of all isolated compounds were unambiguously elucidated based on extensive 1D and 2D NMR, LR-MS and HR-MS analyses. All isolated compounds were assayed for their antiproliferative and protein kinase inhibitory activities. Several of the tested compounds revealed selective activity(ies) which suggested preliminary SARs of the isolated bromopyrrole alkaloids.

Collaboration


Dive into the Emilie Durieu's collaboration.

Top Co-Authors

Avatar

Laurent Meijer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tania Tahtouh

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Lozach

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stefan Knapp

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge