Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie F. Fradin is active.

Publication


Featured researches published by Emilie F. Fradin.


Molecular Plant Pathology | 2006

Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo‐atrum

Emilie F. Fradin; Bart P. H. J. Thomma

SUMMARY INTRODUCTION Verticillium spp. are soil-borne plant pathogens responsible for Verticillium wilt diseases in temperate and subtropical regions; collectively they affect over 200 hosts, including many economically important crops. There are currently no fungicides available to cure plants once they are infected. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum, Pezizomycotina, class: Sordariomycetes, order: Phyllachorales, genus: Verticillium. Host range and disease symptoms: Over 200 mainly dicotyledonous species including herbaceous annuals, perennials and woody species are host to Verticillium diseases. As Verticillium symptoms can vary between hosts, there are no unique symptoms that belong to all plants infected by this fungus. Disease symptoms may comprise wilting, chlorosis, stunting, necrosis and vein clearing. Brown vascular discoloration may be observed in stem tissue cross-sections. Pathogenicity: Verticillium spp. have been reported to produce cell-wall-degrading enzymes and phytotoxins that all have been implicated in symptom development. Nevertheless, evidence for a crucial role of toxins in pathogenicity is inconsistent and therefore not generally accepted. Microsclerotia and melanized mycelium play an important role in the disease cycle as they are a major inoculum source and are the primary long-term survival structures. Resistance: Different defence responses in the prevascular and the vascular stage of Verticillium wilt diseases determine resistance. Although resistance physiology is well established, the molecular processes underlying this physiology remain largely unknown. Resistance against Verticillium largely depends on the isolation of the fungus in contained parts of the xylem tissues followed by subsequent elimination of the fungus. Although genetic resistance has been described in several plant species, only one resistance locus against Verticillium has been cloned to date. Useful website: http://cbr-rbc.nrc-cnrc.gc.ca/services/cogeme/


Plant Physiology | 2009

Genetic Dissection of Verticillium Wilt Resistance Mediated by Tomato Ve1

Emilie F. Fradin; Zhao Zhang; Juan C. Juarez Ayala; Christian Danve M. Castroverde; Ross N. Nazar; Chun-Ming Liu; Bart P. H. J. Thomma

Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.


Plant Physiology | 2011

Interfamily Transfer of Tomato Ve1 Mediates Verticillium Resistance in Arabidopsis

Emilie F. Fradin; Ahmed Abd-El-Haliem; L. Masini; G. C. M. van den Berg; Matthieu H. A. J. Joosten; Bart P. H. J. Thomma

Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance.


Journal of Experimental Botany | 2009

RNA silencing is required for Arabidopsis defence against Verticillium wilt disease

U. Ellendorff; Emilie F. Fradin; Ronnie de Jonge; Bart P. H. J. Thomma

RNA silencing is a conserved mechanism in eukaryotes that plays an important role in various biological processes including regulation of gene expression. RNA silencing also plays a role in genome stability and protects plants against invading nucleic acids such as transgenes and viruses. Recently, RNA silencing has been found to play a role in defence against bacterial plant pathogens in Arabidopsis through modulating host defence responses. In this study, it is shown that gene silencing plays a role in plant defence against multicellular microbial pathogens; vascular fungi belonging to the Verticillium genus. Several components of RNA silencing pathways were tested, of which many were found to affect Verticillium defence. Remarkably, no altered defence towards other fungal pathogens that include Alternaria brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina, but also the vascular pathogen Fusarium oxysporum, was recorded. Since the observed differences in Verticillium susceptibility cannot be explained by notable differences in root architecture, it is speculated that the gene silencing mechanisms affect regulation of Verticillium-specific defence responses.


Plant Journal | 2010

Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance.

Jack H. Vossen; Ahmed Abd-El-Haliem; Emilie F. Fradin; Grardy C. M. van den Berg; Sophia K. Ekengren; Harold J. G. Meijer; Alireza Seifi; Yuling Bai; Arjen ten Have; Teun Munnik; Bart P. H. J. Thomma; Matthieu H. A. J. Joosten

The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs were isolated and their expression in response to infection with the pathogenic fungus Cladosporium fulvum was studied. We found significant regulation at the transcriptional level of the various SlPLCs, and SlPLC4 and SlPLC6 showed distinct expression patterns in C. fulvum-resistant Cf-4 tomato. We produced the encoded proteins in Escherichia coli and found that both genes encode catalytically active PI-PLCs. To test the requirement of these Sl PLCs for full Cf-4-mediated recognition of the effector Avr4, we knocked down the expression of the encoding genes by virus-induced gene silencing. Silencing of SlPLC4 impaired the Avr4/Cf-4-induced HR and resulted in increased colonisation of Cf-4 plants by C. fulvum expressing Avr4. Furthermore, expression of the gene in Nicotiana benthamiana enhanced the Avr4/Cf-4-induced HR. Silencing of SlPLC6 did not affect HR, whereas it caused increased colonisation of Cf-4 plants by the fungus. Interestingly, Sl PLC6, but not Sl PLC4, was also required for resistance to Verticillium dahliae, mediated by the transmembrane Ve1 resistance protein, and to Pseudomonas syringae, mediated by the intracellular Pto/Prf resistance protein couple. We conclude that there is a differential requirement of PLC isoforms for the plant immune response and that Sl PLC4 is specifically required for Cf-4 function, while Sl PLC6 may be a more general component of resistance protein signalling.


Nucleic Acids Research | 2009

A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans

Agnieszka Doroszuk; L. Basten Snoek; Emilie F. Fradin; Joost A. G. Riksen; Jan E. Kammenga

Recombinant inbred lines (RILs) derived from Caenorhabditis elegans wild-type N2 and CB4856 are increasingly being used for mapping genes underlying complex traits. To speed up mapping and gene discovery, introgression lines (ILs) offer a powerful tool for more efficient QTL identification. We constructed a library of 90 ILs, each carrying a single homozygous CB4856 genomic segment introgressed into the genetic background of N2. The ILs were genotyped by 123 single-nucleotide polymorphism (SNP) markers. The proportion of the CB4856 segments in most lines does not exceed 3%, and together the introgressions cover 96% of the CB4856 genome. The value of the IL library was demonstrated by identifying novel loci underlying natural variation in two ageing-related traits, i.e. lifespan and pharyngeal pumping rate. Bin mapping of lifespan resulted in six QTLs, which all have a lifespan-shortening effect on the CB4856 allele. We found five QTLs for the decrease in pumping rate, of which four colocated with QTLs found for average lifespan. This suggests pleiotropic or closely linked QTL associated with lifespan and pumping rate. Overall, the presented IL library provides a versatile resource toward easier and efficient fine mapping and functional analyses of loci and genes underlying complex traits in C. elegans.


The Plant Cell | 2015

Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in Arabidopsis thaliana

Johanna A. Bac-Molenaar; Emilie F. Fradin; Frank Becker; Juriaan A. Rienstra; J.R. van der Schoot; Dick Vreugdenhil; Joost J. B. Keurentjes

Genome-wide association mapping identified four stage-specific QTLs that affect the Arabidopsis heat response and analysis of QTLs revealed candidate genes. For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.


PLOS ONE | 2014

Functional analysis of the tomato immune receptor Ve1 through domain swaps with its non-functional homolog Ve2.

Emilie F. Fradin; Zhao Zhang; Hanna Rovenich; Yin Song; Thomas W. H. Liebrand; Laura Masini; Grardy C. M. van den Berg; Matthieu H. A. J. Joosten; Bart P. H. J. Thomma

Resistance in tomato against race 1 strains of the fungal vascular wilt pathogens Verticillium dahliae and V. albo-atrum is mediated by the Ve locus. This locus comprises two closely linked inversely oriented genes, Ve1 and Ve2, which encode cell surface receptors of the extracellular leucine-rich repeat receptor-like protein (eLRR-RLP) type. While Ve1 mediates Verticillium resistance through monitoring the presence of the recently identified V. dahliae Ave1 effector, no functionality for Ve2 has been demonstrated in tomato. Ve1 and Ve2 contain 37 eLRRs and share 84% amino acid identity, facilitating investigation of Ve protein functionality through domain swapping. In this study it is shown that Ve chimeras in which the first thirty eLRRs of Ve1 were replaced by those of Ve2 remain able to induce HR and activate Verticillium resistance, and that deletion of these thirty eLRRs from Ve1 resulted in loss of functionality. Also the region between eLRR30 and eLRR35 is required for Ve1-mediated resistance, and cannot be replaced by the region between eLRR30 and eLRR35 of Ve2. We furthermore show that the cytoplasmic tail of Ve1 is required for functionality, as truncation of this tail results in loss of functionality. Moreover, the C-terminus of Ve2 fails to activate immune signaling as chimeras containing the C-terminus of Ve2 do not provide Verticillium resistance. Furthermore, Ve1 was found to interact through its C-terminus with the eLRR-containing receptor-like kinase (eLRR-RLK) interactor SOBIR1 that was recently identified as an interactor of eLRR-RLP (immune) receptors. Intriguingly, also Ve2 was found to interact with SOBIR1.


Molecular Plant-microbe Interactions | 2013

Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco.

Zhao Zhang; Emilie F. Fradin; R. de Jonge; P. van Esse; P. Smit; Chun-Ming Liu; Bart P. H. J. Thomma

Recognition of pathogen effectors by plant immune receptors often leads to the activation of a hypersensitive response (HR), which is a rapid and localized cell death of plant tissue surrounding the site at which recognition occurs. Due to its particular amenability to transient assays for functional genetics, tobacco is a model for immune signaling in the Solanaceae plant family. Here, we show that coexpression of the tomato (Solanum lycopersicum) immune receptor Ve1 and the corresponding Verticillium effector protein Ave1 leads to HR only in particular tobacco species. Whereas HR is obtained in Nicotiana tabacum, no such response is obtained in N. benthamiana. Furthermore, our analysis revealed an endogenous Ve1 ortholog in Nicotiana glutinosa, as expression of Ave1 in absence of Ve1 induced a HR, and N. glutinosa was found to be resistant against race 1 Verticillium dahliae. We furthermore report the establishment of virus-induced gene silencing in N. tabacum for functional analysis of Ve1 signaling. Collectively, our data show that N. tabacum can be used as a model plant to study Ve1-mediated immune signaling.


New Phytologist | 2017

Genetic architecture of plant stress resistance: multi‐trait genome‐wide association mapping

Manus P. M. Thoen; Nelson H. Davila Olivas; Karen J. Kloth; Silvia Coolen; Ping Ping Huang; Mark G. M. Aarts; Johanna A. Bac-Molenaar; Jaap Bakker; Harro J. Bouwmeester; Colette Broekgaarden; Johan Bucher; Jacqueline Busscher-Lange; Xi Cheng; Emilie F. Fradin; Maarten A. Jongsma; Magdalena M. Julkowska; Joost J. B. Keurentjes; Wilco Ligterink; Corné M. J. Pieterse; Carolien Ruyter-Spira; Geert Smant; Christa Testerink; Björn Usadel; Joop J. A. van Loon; Johan A. Van Pelt; Casper van Schaik; Saskia C. M. Van Wees; Richard G. F. Visser; Roeland E. Voorrips; Ben Vosman

Summary Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker‐trait associations in genome‐wide association (GWA) analyses using tailored multi‐trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad‐spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below‐ground vs above‐ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.

Collaboration


Dive into the Emilie F. Fradin's collaboration.

Top Co-Authors

Avatar

Bart P. H. J. Thomma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

U. Ellendorff

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ahmed Abd-El-Haliem

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Matthieu H. A. J. Joosten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Zhao Zhang

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Johanna A. Bac-Molenaar

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joost J. B. Keurentjes

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Juriaan A. Rienstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Alireza Seifi

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dick Vreugdenhil

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge