Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Falconnet is active.

Publication


Featured researches published by Emilie Falconnet.


Nature | 2012

Landscape of transcription in human cells

Sarah Djebali; Carrie A. Davis; Angelika Merkel; Alexander Dobin; Timo Lassmann; Ali Mortazavi; Andrea Tanzer; Julien Lagarde; Wei Lin; Felix Schlesinger; Chenghai Xue; Georgi K. Marinov; Jainab Khatun; Brian A. Williams; Chris Zaleski; Joel Rozowsky; Maik Röder; Felix Kokocinski; Rehab F. Abdelhamid; Tyler Alioto; Igor Antoshechkin; Michael T. Baer; Nadav S. Bar; Philippe Batut; Kimberly Bell; Ian Bell; Sudipto Chakrabortty; Xian Chen; Jacqueline Chrast; Joao Curado

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


eLife | 2013

Passive and active DNA methylation and the interplay with genetic variation in gene regulation

Maria Gutierrez-Arcelus; Tuuli Lappalainen; Stephen B. Montgomery; Alfonso Buil; Halit Ongen; Alisa Yurovsky; Thomas Giger; Luciana Romano; Alexandra Planchon; Emilie Falconnet; Deborah Bielser; Maryline Gagnebin; Ismael Padioleau; Christelle Borel; A. Letourneau; Periklis Makrythanasis; Michel Guipponi; Corinne Gehrig; Emmanouil T. Dermitzakis

DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression. DOI: http://dx.doi.org/10.7554/eLife.00523.001


Nature | 2014

Domains of genome-wide gene expression dysregulation in Down’s syndrome

A. Letourneau; Federico Santoni; Ximena Bonilla; M. Reza Sailani; David Gonzalez; Jop Kind; Claire Chevalier; Robert E. Thurman; Richard Sandstrom; Youssef Hibaoui; Marco Garieri; Konstantin Popadin; Emilie Falconnet; Maryline Gagnebin; Corinne Gehrig; Anne Vannier; Michel Guipponi; Laurent Farinelli; Daniel Robyr; Eugenia Migliavacca; Christelle Borel; Samuel Deutsch; Anis Feki; John A. Stamatoyannopoulos; Yann Herault; Bas van Steensel; Roderic Guigó

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


PLOS Genetics | 2015

Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.

Maria Gutierrez-Arcelus; Halit Ongen; Tuuli Lappalainen; Stephen B. Montgomery; Alfonso Buil; Alisa Yurovsky; Ismael Padioleau; Luciana Romano; Alexandra Planchon; Emilie Falconnet; Deborah Bielser; Maryline Gagnebin; Thomas Giger; Christelle Borel; A. Letourneau; Periklis Makrythanasis; Michel Guipponi; Corinne Gehrig; Emmanouil T. Dermitzakis

Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans’ lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types). This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore, the details of how this tissue-specificity may vary across inter-relations of molecular traits, and where these are occurring, can yield further insights into gene regulation and cellular biology as a whole.


American Journal of Human Genetics | 2015

Biased Allelic Expression in Human Primary Fibroblast Single Cells

Christelle Borel; Pedro G. Ferreira; Federico Santoni; Olivier Delaneau; Alexandre Fort; Konstantin Popadin; Marco Garieri; Emilie Falconnet; Pascale Ribaux; Michel Guipponi; Ismael Padioleau; Piero Carninci; Emmanouil T. Dermitzakis

The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability.


Genome Research | 2011

Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts

Christelle Borel; Samuel Deutsch; A. Letourneau; Eugenia Migliavacca; Stephen B. Montgomery; Antigone S. Dimas; Charles E. Vejnar; Homa Attar; Maryline Gagnebin; Corinne Gehrig; Emilie Falconnet; Yann Dupré; Emmanouil T. Dermitzakis

MicroRNAs (miRNAs) are regulatory noncoding RNAs that affect the production of a significant fraction of human mRNAs via post-transcriptional regulation. Interindividual variation of the miRNA expression levels is likely to influence the expression of miRNA target genes and may therefore contribute to phenotypic differences in humans, including susceptibility to common disorders. The extent to which miRNA levels are genetically controlled is largely unknown. In this report, we assayed the expression levels of miRNAs in primary fibroblasts from 180 European newborns of the GenCord project and performed association analysis to identify eQTLs (expression quantitative traits loci). We detected robust expression for 121 miRNAs out of 365 interrogated. We have identified significant cis- (10%) and trans- (11%) eQTLs. Furthermore, we detected one genomic locus (rs1522653) that influences the expression levels of five miRNAs, thus unraveling a novel mechanism for coregulation of miRNA expression.


Respiration | 2008

DNAI1 Mutations Explain Only 2% of Primary Ciliary Dykinesia

Mike Failly; Alexandra Saitta; Analia Munoz; Emilie Falconnet; Colette Rossier; Francesca Santamaria; Maria Margherita De Santi; Romain Lazor; Celia D. DeLozier-Blanchet; Lucia Bartoloni; Jean-Louis Blouin

Background: Primary ciliary dyskinesia (PCD) is a rare recessive hereditary disorder characterized by dysmotility to immotility of ciliated and flagellated structures. Its main symptoms are respiratory, caused by defective ciliary beating in the epithelium of the upper airways (nose, bronchi and paranasal sinuses). Impairing the drainage of inhaled microorganisms and particles leads to recurrent infections and pulmonary complications. To date, 5 genes encoding 3 dynein protein arm subunits (DNAI1, DNAH5 and DNAH11), the kinase TXNDC3 and the X-linked RPGR have been found to be mutated in PCD. Objectives: We proposed to determine the impact of the DNAI1 gene on a cohort of unrelated PCD patients (n = 104) recruited without any phenotypic preselection. Methods: We used denaturing high-performance liquid chromatography and sequencing to screen for mutations in the coding and splicing site sequences of the gene DNAI1. Results: Three mutations were identified: a novel missense variant (p.Glu174Lys) was found in 1 patient and 2 previously reported variants were identified (p.Trp568Ser in 1 patient and IVS1+2_3insT in 3 patients). Overall, mutations on both alleles of gene DNAI1 were identified in only 2% of our clinically heterogeneous cohort of patients. Conclusion: We conclude that DNAI1 gene mutation is not a common cause of PCD, and that major or several additional disease gene(s) still remain to be identified before a sensitive molecular diagnostic test can be developed for PCD.


Human Mutation | 2012

Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD

Jane S. Lucas; Elizabeth Adam; Patricia Goggin; Claire Jackson; Nicola Powles-Glover; Saloni H. Patel; James Humphreys; Martin Fray; Emilie Falconnet; Jean-Louis Blouin; Michael Cheeseman; Lucia Bartoloni; Dominic P. Norris; Peter M. Lackie

Primary ciliary dyskinesia (PCD) is an inherited disorder causing significant upper and lower respiratory tract morbidity and impaired fertility. Half of PCD patients show abnormal situs. Human disease loci have been identified but a mouse model without additional deleterious defects is elusive. The inversus viscerum mouse, mutated at the outer arm dynein heavy chain 11 locus (Dnahc11) is a known model of heterotaxy. We demonstrated immotile tracheal cilia with normal ultrastructure and reduced sperm motility in the Dnahc11iv mouse. This is accompanied by gross rhinitis, sinusitis, and otitis media, all indicators of human PCD. Strikingly, age‐related progression of the disease is evident. The Dnahc11iv mouse is robust, lacks secondary defects, and requires no intervention to precipitate the phenotype. Together these findings show the Dnahc11iv mouse to be an excellent model of many aspects of human PCD. Mutation of the homologous human locus has previously been associated with hyperkinetic tracheal cilia in PCD. Two PCD patients with normal ciliary ultrastructure, one with immotile and one with hyperkinetic cilia were found to carry DNAH11 mutations. Three novel DNAH11 mutations were detected indicating that this gene should be investigated in patients with normal ciliary ultrastructure and static, as well as hyperkinetic cilia. Hum Mutat 33:495–503, 2012.


Genome Research | 2013

The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome

M. Reza Sailani; Periklis Makrythanasis; Armand Valsesia; Federico Santoni; Samuel Deutsch; Konstantin Popadin; Christelle Borel; Eugenia Migliavacca; Andrew J. Sharp; Genevieve Duriaux Sail; Emilie Falconnet; Kelly Rabionet; Clara Serra-Juhé; Stefano Vicari; Daniela Laux; Yann Grattau; Guy Dembour; Andre Megarbane; Renaud Touraine; Samantha Stora; Sofia Kitsiou; Helena Fryssira; Chariklia Chatzisevastou-Loukidou; Emmanouel Kanavakis; Giuseppe Merla; Damien Bonnet; Luis A. Pérez-Jurado; Xavier Estivill; Jean Maurice Delabar

Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.


Stem Cell Research | 2014

Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications

Antonietta Coppola; Antonio Romito; Christelle Borel; Corinne Gehrig; Maryline Gagnebin; Emilie Falconnet; Antonella Izzo; Lucia Altucci; Sandro Banfi; Gabriella Minchiotti; Gilda Cobellis

Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis.

Collaboration


Dive into the Emilie Falconnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge