Emilio A. Lauret
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emilio A. Lauret.
International Mathematics Research Notices | 2016
Emilio A. Lauret; Roberto J. Miatello; Juan Pablo Rossetti
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Centro de Investigacion y Estudios de Matematica. Universidad Nacional de Cordoba. Centro de Investigacion y Estudios de Matematica; Argentina
Journal of Geometric Analysis | 2017
Sebastian Boldt; Emilio A. Lauret
We present a new description of the spectrum of the (spin-) Dirac operator D on lens spaces. Viewing a spin lens space L as a locally symmetric space
Annals of Global Analysis and Geometry | 2016
Emilio A. Lauret
Journal of Geometric Analysis | 2015
Emilio A. Lauret; Roberto J. Miatello; Juan Pablo Rossetti
\Gamma \backslash {\text {Spin}}(2m)/{\text {Spin}}(2m-1)
arXiv: Number Theory | 2013
Emilio A. Lauret
arXiv: Differential Geometry | 2015
Emilio A. Lauret; Roberto J. Miatello; Juan Pablo Rossetti
Γ\Spin(2m)/Spin(2m-1) and exploiting the representation theory of the
Transformation Groups | 2018
Emilio A. Lauret
Comptes Rendus Mathematique | 2018
Emilio A. Lauret; Fiorela Rossi Bertone
{\text {Spin}}
Mathematics of Computation | 2015
Wai Kiu Chan; Maria Ines Icaza; Emilio A. Lauret
arXiv: Number Theory | 2014
Emilio A. Lauret
Spin groups, we obtain explicit formulas for the multiplicities of the eigenvalues of D in terms of finitely many integer operations. As a consequence, we present conditions for lens spaces to be Dirac isospectral. Tackling classic questions of spectral geometry, we prove with the tools developed that neither spin structures nor isometry classes of lens spaces are spectrally determined by giving infinitely many examples of finite families of Dirac isospectral lens spaces. These results are complemented by examples found with the help of a computer.