Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilio Pardo is active.

Publication


Featured researches published by Emilio Pardo.


Journal of the American Chemical Society | 2011

High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework.

Emilio Pardo; Cyrille Train; Geoffrey Gontard; Kamal Boubekeur; Oscar Fabelo; Hongbo Liu; Brahim Dkhil; Francesc Lloret; Kosuke Nakagawa; Hiroko Tokoro; Shin-ichi Ohkoshi; Michel Verdaguer

A complex-as-ligand strategy to get a multifunctional molecular material led to a metal-organic framework with the formula (NH(4))(4)[MnCr(2)(ox)(6)]·4H(2)O. Single-crystal X-ray diffraction revealed that the anionic bimetallic coordination network adopts a chiral three-dimensional quartz-like architecture. It hosts ammonium cations and water molecules in functionalized channels. In addition to ferromagnetic ordering below T(C) = 3.0 K related to the host network, the material exhibits a very high proton conductivity of 1.1 × 10(-3) S cm(-1) at room temperature due to the guest molecules.


Angewandte Chemie | 2012

Multiferroics by Rational Design: Implementing Ferroelectricity in Molecule‐Based Magnets

Emilio Pardo; Cyrille Train; Hongbo Liu; Lise-Marie Chamoreau; Brahim Dkhil; Kamal Boubekeur; Francesc Lloret; Keitaro Nakatani; Hiroko Tokoro; Shin-ichi Ohkoshi; Michel Verdaguer

Multiferroics (MF) are materials that exhibit simultaneouslyseveral ferroic order parameters. Among the multiferroicmaterials, those combining antiferro- or ferroelectricity (FE)and antiferro-, ferri-, or ferromagnetism (FM) within thesame material are highly desirable: the coexistence of thepolar and magnetic orders paves the way towards four-levelmemories while their interactions through the magnetoelec-tric effect makes it possible to control the magnetization byelectric fields and hence to develop electronically tuneablemagnetic devices, which are an essential feature for spin-tronics.


Angewandte Chemie | 2013

Field‐Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex

Julia Vallejo; Alejandro Pascual‐Álvarez; Joan Cano; Isabel Castro; Miguel Julve; Francesc Lloret; J. Krzystek; Giovanni De Munno; Donatella Armentano; Wolfgang Wernsdorfer; Rafael Ruiz-García; Emilio Pardo

High-nuclearity complexes of transition-metal ions have been of special interest during the last two decades owing to the possibility of observing slow magnetic relaxation effects at the molecular level. These molecular nanomagnets have potential applications as new high-density magnetic memories and quantum-computing devices in the field of molecular spintronics. The first example of a discrete molecule exhibiting hysteresis and quantum tunneling of the magnetization was the mixed-valent dodecanuclear manganese(III,IV) complex [Mn12O12(CH3CO2)16(H2O)4]. [3] Since then, a plethora of both homoand heterovalent, manganese-based molecular nanomagnets of varying metal oxidation states (i.e., Mn, Mn and/or Mn) have been reported, with nuclearities from up to [Mn84] down to the smaller [Mn III 2] species. [4] However, to our knowledge, there are no examples of mononuclear manganese complexes exhibiting the slow magnetic relaxation effects typical of molecular nanomagnets, referred to as single-ion magnet (SIMs). This is somewhat puzzling, since several SIMs of other highly anisotropic first-row transition metals (i.e., Co and Fe) have been recently reported which has rekindled the debate in the field of singlemolecular magnetism. The six-coordinated octahedral high-spin d Mn ion (S = 2) has an orbitally degenerate Eg ground electronic term that is split by the Jahn–Teller effect into A1g and B1g orbital singlet low-lying states. Owing to the large mixing between them, second-order spin-orbit coupling (SOC) effects are ultimately responsible for the occurrence of a large axial magnetic anisotropy whose sign depends on the ground state, that is, on the nature of the axial tetragonal distortion. For an axially elongated octahedral Mn environment, negative D values are expected that can potentially lead to a large energy barrier for the magnetization reversal between the two lowest MS = 2 states. To provide this type of geometry and obtain manganese(III)-based SIMs, planar tetradentate chelating ligands with strong donor groups are a well-suited choice. Herein, we report a complete study on the synthesis, structural characterization, spectroscopic and magnetic properties, and theoretical calculations of Ph4P[Mn(opbaCl2)(py)2] (1) [H4opbaCl2 = N,N’-3,4-dichloro-o-phenylenebis(oxamic acid), py = pyridine, and Ph4P + = tetraphenylphosphonium cation]. Complex 1 is the first example of a mononuclear manganese(III) complex exhibiting a field-induced slow magnetic relaxation behavior, thus increasing the number of first-row transition-metal-ion SIMs. Complex 1 was obtained as well-formed deep brown cubic prisms by slow evaporation of a methanol/pyridine (1:4 v/v) solution of its tetramethylammonium salt in the presence of an excess of Ph4PCl (see Supporting Information). It crystallizes in the P21/c space group of the monoclinic system (Table S1, Supporting Information). The crystal structure of 1 consists of mononuclear manganese(III) complex anions, [Mn(opbaCl2)(py)2] (Figure 1), which are well separated from each other due to the presence of the bulky tetraphenylphosphonium countercations (Figure S1, Supporting Information). The manganese atom of 1 has a tetragonally elongated octahedral coordination geometry which is typical of the Jahn–Teller distorted d Mn ion. The equatorial plane is formed by two amidate nitrogen and two carboxylate oxygen atoms from the opbaCl2 ligand, while the axial positions are occupied by two pyridine nitrogen atoms (Figure 1a). The planar opbaCl2 ligand adopts a tetradentate coordination


Journal of the American Chemical Society | 2012

The Role of Order-Disorder Transitions in the Quest for Molecular Multiferroics: Structural and Magnetic Neutron Studies of a Mixed Valence Iron (II)-Iron (III) Formate Framework

Laura Cañadillas-Delgado; Oscar Fabelo; J. Alberto Rodríguez-Velamazán; Marie-Hélène Lemée-Cailleau; Sax A. Mason; Emilio Pardo; Francesc Lloret; Jiong-Peng Zhao; Xian-He Bu; Virginie Simonet; Claire V. Colin; J. Rodríguez-Carvajal

Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.


Advanced Materials | 2012

Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet

Jesús Ferrando-Soria; Hossein Khajavi; Pablo Serra-Crespo; Jorge Gascon; Freek Kapteijn; Miguel Julve; Francesc Lloret; Jorge Pasán; Catalina Ruiz-Pérez; Yves Journaux; Emilio Pardo

Among the wide variety of properties of interest that a given material can exhibit, luminescence is attracting an increasing attention due to its potential application in optical devices for lighting equipment and optical storage, [ 1a − c] optical switching, [ 1d ,e] and sensing. [ 1f − i ] At this respect, many scientists, working in the multidisciplinary fi eld of the materials science, have directed their efforts to the obtention of luminescent materials with potential sensing applications. For instance, sensitive and selective detection of gas and vapor phase analytes can result specially interesting because of the variety of applications that can be found in many different fi elds. A key principle concerning the luminescent chemosensors [ 2 ] is that they must be able to detect differences between small molecules, [ 2 , 3 ] and sequentially implement a recognition– transduction protocol. [ 2b ] In this sense, the remarkable shape selectivity of a class of highly porous materials, the so-called metal-organic frameworks (MOFs) [ 4 ] which have already shown applications in different fi elds (gas storage and separation, molecular recognition and catalysis, molecular electronics and spintronics, molecular photonics, etc) [ 4–6 ] has converted them in excellent candidates for the fabrication of chemical sensors. [ 2 , 3 ] The key point responsible for the high potential success of MOFs as chemo-sensors is the exceptional tunability of their structures and properties.


Inorganic Chemistry | 2012

Antisymmetric Exchange in Triangular Tricopper(II) Complexes: Correlation among Structural, Magnetic, and Electron Paramagnetic Resonance Parameters

Sacramento Ferrer; Francesc Lloret; Emilio Pardo; Juan M. Clemente-Juan; Malva Liu-González; Santiago García-Granda

Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriyas theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.


Inorganic Chemistry | 2009

Ferromagnetic Coupling by Spin Polarization in a Trinuclear Copper(II) Metallacyclophane with a Triangular Cage-Like Structure

Marie-Claire Dul; Xavier Ottenwaelder; Emilio Pardo; Rodrigue Lescouëzec; Yves Journaux; Lise-Marie Chamoreau; Rafael Ruiz-García; Joan Cano; Miguel Julve; Francesc Lloret

A series of trinuclear copper(II) complexes of general formula A(6)[Cu(3)L(2)] x nH(2)O [L = benzene-1,3,5-tris(oxamate); A = Li(+) (n = 8), 1a; Na(+) (n = 11.5), 1b; and K(+) (n = 8.5), 1c] have been synthesized, and they have been structurally and magnetically characterized. X-ray diffraction on single crystals of 1c shows the presence of three square-planar copper(II)-bis(oxamato) moieties which are connected by a double benzene-1,3,5-triyl skeleton to give a unique metallacyclophane-type triangular cage. The copper basal planes are virtually orthogonal to the two benzene rings, which adopt an almost perfect face-to-face alignment. Complexes 1a-c exhibit a quartet (S = 3/2) ground spin state resulting from the moderate ferromagnetic coupling (J values in the range of +7.3 to +16.5 cm(-1)) between the three Cu(II) ions across the two benzene-1,3,5-tris(amidate) bridges [H = -J(S(1) x S(2) + S(2) x S(3) + S(3) x S(1)) with S(1) = S(2) = S(3) = S(Cu) = 1/2]. Density functional theory calculations on the S = 3/2 Cu(II)(3) ground spin state of 1c support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction, as evidenced by the sign alternation of the spin density in the 1,3,5-substituted benzene spacers.


Nature Materials | 2017

The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry

Francisco R. Fortea-Pérez; Marta Mon; Jesús Ferrando-Soria; Mercedes Boronat; Antonio Leyva-Pérez; Avelino Corma; Juan Manuel Herrera; Dmitrii Osadchii; Jorge Gascon; Donatella Armentano; Emilio Pardo

The development of catalysts able to assist industrially important chemical processes is a topic of high importance. In view of the catalytic capabilities of small metal clusters, research efforts are being focused on the synthesis of novel catalysts bearing such active sites. Here we report a heterogeneous catalyst consisting of Pd4 clusters with mixed-valence 0/+1 oxidation states, stabilized and homogeneously organized within the walls of a metal-organic framework (MOF). The resulting solid catalyst outperforms state-of-the-art metal catalysts in carbene-mediated reactions of diazoacetates, with high yields (>90%) and turnover numbers (up to 100,000). In addition, the MOF-supported Pd4 clusters retain their catalytic activity in repeated batch and flow reactions (>20 cycles). Our findings demonstrate how this synthetic approach may now instruct the future design of heterogeneous catalysts with advantageous reaction capabilities for other important processes.


Accounts of Chemical Research | 2015

Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

María Castellano; Rafael Ruiz-García; Joan Cano; Jesús Ferrando-Soria; Emilio Pardo; Francisco R. Fortea-Pérez; Salah-Eddine Stiriba; Miguel Julve; Francesc Lloret

Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.


Chemistry: A European Journal | 2016

Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

Marta Mon; Alejandro Pascual‐Álvarez; Thais Grancha; Joan Cano; Jesús Ferrando-Soria; Francesc Lloret; Jorge Gascon; Jorge Pasán; Donatella Armentano; Emilio Pardo

Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM.

Collaboration


Dive into the Emilio Pardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan Cano

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Journaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Pasán

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Mon

University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge