Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilio Saccani is active.

Publication


Featured researches published by Emilio Saccani.


The Journal of Geology | 2002

Interaction between Mid‐Ocean Ridge and Subduction Magmatism in Albanian Ophiolites

Valerio Bortolotti; Michele Marroni; Luca Pandolfi; Gianfranco Principi; Emilio Saccani

Albanian ophiolites are represented by two different coeval belts, each displaying well‐exposed, complete ophiolitic sequences that originated in the same oceanic basin and each showing distinct geochemical characteristics. The eastern belt is characterized by suprasubduction zone (SSZ) ophiolitic sequences, including island arc tholeiitic and boninitic volcanic series. The western belt, although composed mainly of mid‐ocean ridge‐type (MOR‐type) ophiolites with high‐Ti geochemical affinity, also exhibits alternating sequences showing distinct geochemical affinities referable to MOR‐ and SSZ‐type volcanics. These volcanics can be geochemically subdivided into four groups: (1) group 1 basalts show high field strength element (HFSE) and rare earth element (REE) concentrations similar to those of ocean‐floor basalts; (2) group 2 basalts, basaltic andesites, dacites, and rhyolites, characterized by HFSE and light REE depletion similar to those in many low‐Ti volcanics from SSZ settings; (3) group 3 basalts exhibit geochemical features intermediate between groups 1 and 2 but also bear SSZ features, being characterized by HFSE depletion with respect to the N‐MORBs; (4) group 4 boninitic dikes display very low‐Ti contents and typically depleted, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


International Journal of Earth Sciences | 2013

Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?

Valerio Bortolotti; Marco Chiari; Michele Marroni; Luca Pandolfi; Gianfranco Principi; Emilio Saccani


Geological Society, London, Special Publications | 2003

Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): new constraints for the early oceanization phases of the Neo-Tethyan Pindos basin

Emilio Saccani; Elisa Padoa; Adonis Photiades

\textsf{U}


Ofioliti | 2011

THE GEOLOGY OF THE ZLATIBOR-MALJEN AREA (WESTERN SERBIA): A GEOTRAVERSE ACROSS THE OPHIOLITES OF THE DINARIC-HELLENIC COLLISIONAL BELT

M. Chiari; N. Djeric; Francesca Garfagnoli; H. Hrvatovic; M. Krstic; N. Levi; A. Malasoma; Michele Marroni; Francesco Menna; Giuseppe Nirta; Luca Pandolfi; Gianfranco Principi; Emilio Saccani; U. Stojadinovic


Lithosphere | 2017

Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites

Emilio Saccani; Yildirim Dilek; Adonis Photiades

\end{document} ‐shaped REE patterns. These different magmatic groups are interpreted as having originated from fractional crystallization from different primary basalts that were generated, in turn, from partial melting of mantle sources progressively depleted by previous melt extractions. Consequently, group 1 basalts may derive from partial melting of a fertile MORB source, while group 3 basalts may derive from 10% partial melting of a mantle that previously experienced MORB extraction. Finally, the group 2 basalts and group 4 boninites may be derived from about 10% partial melting of a mantle peridotite previously depleted by primary melt extraction of group 1 and group 3 primary melts. To explain the coexistence of these geochemically different magma groups, we present a model based on the complexity of the magmatic processes that may take place during the initiation of subduction in proximity to an active MOR. This model implies that the initiation of subduction processes close to such a ridge leads to contemporaneous eruptions in a fore‐arc setting of MORBs (group 1) generated from the extinguishing MOR and the initiation of group 3 basalts generated in the SSZ mantle wedge from a moderately depleted mantle source. The development of the subduction in a young, hot lithosphere caused the generation of island arc tholeiitic basalts (group 2) and boninites (group 4) from strongly depleted mantle peridotites in the early stages of subduction, soon after the generation of group 1 and group 3 basaltic rocks.


Geological Magazine | 2018

The Jurassic–Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: age and geochemistry

Valerio Bortolotti; Marco Chiari; M. Cemal Göncüoglu; Gianfranco Principi; Emilio Saccani; U. Kagan Tekin; Renzo Tassinari

All the geological constraints for an exhaustive reconstruction of the Triassic to Tertiary tectonic history of the southern Dinaric-Hellenic belt can be found in Albania and Greece. This article aims to schematically reconstruct this long tectonic evolution primarily based on a detailed analysis of the tectonic setting, the stratigraphy, the geochemistry, and the age of the ophiolites. In contrast to what was previously reported in the literature, we propose a new subdivision on a regional scale of the ophiolite complexes cropping out in Albania and Greece. This new subdivision includes six types of ophiolite occurrences, each corresponding to different tectonic units derived from a single obducted sheet. These units are represented by: (1) sub-ophiolite mélange, (2) Triassic ocean-floor ophiolites, (3) metamorphic soles, (4) Jurassic fore-arc ophiolites, (5) Jurassic intra-oceanic-arc ophiolites, and (6) Jurassic back-arc basin ophiolites. The overall features of these ophiolites are coherent with the existence of a single, though composite, oceanic basin located east of the Adria/Pelagonian continental margin. This oceanic basin was originated during the Middle Triassic and was subsequently (Early Jurassic) affected by an east-dipping intra-oceanic subduction. This subduction was responsible for the birth of intra-oceanic-arc and back-arc oceanic basins separated by a continental volcanic arc during the Early to Middle Jurassic. From the uppermost Middle Jurassic to the Early Cretaceous, an obduction developed, during which the ophiolites were thrust westwards firstly onto the neighboring oceanic lithosphere and then onto the Adria margin.


Mineralogy and Petrology | 2016

Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system

Emilio Saccani; Gianfranco Principi

Abstract The Middle Unit of the central-northern Argolis Peninsula, in NE Peloponnesus (Greece), is composed of several tectonic slices, locally including intact sequences of mafic volcanic rocks topped by radiolarian cherts. Although some of these sequences are Jurassic in age, many of them display a Triassic age based on biostratigraphical evidence. The petrological studies presented in this paper indicate that the Triassic volcanic rocks were generated in a mid-ocean ridge setting, and that they represent the oldest remnants of the Pindos oceanic crust so far recognized in the Subpelagonian zone. On the basis of immobile trace element analyses, two chemically distinct groups of Triassic lavas can be recognized in the various volcanic sequences. One group is represented by transitional-type mid-ocean ridge basalts (T-MORBs) displaying moderate light rare earth element (LREE) enrichment, and incompatible element abundances very similar to those observed in present-day T-MORBs. The other group exhibits a range of characteristics typical of many normal-type MORBs: that is, variable LREE depletion and flat N-MORB normalized patterns of incompatible element abundance. Moreover, many geochemical characteristics indicate that the various N-MORB type volcanic sequences originated from chemically distinct (heterogeneous) sub-oceanic mantle sources. Analogous to similar basalts from ophiolitic mélanges of the Dinaride-Hellenide belt, the T-MORBs from the Argolis Middle Unit are interpreted as having originated from a primitive mantle source variably enriched by an ocean-island basalt (OIB)-type component. In contrast, the contemporaneous occurrence of N-MORBs implies that, during the Mid-Late Triassic, oceanic spreading of the Pindos basin had already reached, at least in some sectors, a quasi-steady state involving only sub-oceanic mantle sources and their partial melt derivatives. Our model for the Triassic opening of the Pindos oceanic basin and its related tectonomagmatic evolution is largely supported by comparison with the Red Sea embryonic ocean, a modern analogous setting.


Lithos | 2004

Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting

Emilio Saccani; Adonis Photiades

In this paper, we describe the stratigraphic and structural features of the tectonic units cropping out along the Zlatibor-Maljen geotraverse, located in western Serbia at the boundary with Bosnia-Herzegovina, and we present also a 1:100,000 scale geological map. The study area corresponds to a SSW-NNE geotraverse, where the main oceanic and continental tectonic units of the Dinaric-Hellenic belt are well exposed. Along this geotraverse, the tectonic pile includes at the top the units derived from the European Plate, here represented only by the Ljig Unit, that was thrust over the oceanic units, cropping out in two distinct massifs, the Zlatibor and Maljen ones. In both massifs the oceanic units consist of a sub-ophiolite melange overthrust by an ophiolite unit represented exclusively by mantle peridotites with the metamorphic sole at their base. In turn the oceanic units are overthrust the Adria-derived units, here represented by the East Bosnian-Durmitor and Drina-Ivanjica Units, respectively located westward and eastward of the Zlatibor Massif. The geological data and the tectonic reconstruction suggest that the ophiolites of the two s may have originated in the same composite oceanic basin that experienced oceanic opening, intra-oceanic subduction, development of supra-subduction oceanic basins and finally closure, in a time span ranging from Middle Triassic to Late Jurassic. The stratigraphic and structural dataset presented in this paper allows some insights about the geodynamic history of the northern area of the Dinaric-Hellenic belt, as well as a comparison with the reconstructions proposed for the southernmost area by other authors.


Island Arc | 2005

Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide–Hellenide Subpelagonian zone

Luigi Beccaluva; Massimo Coltorti; Emilio Saccani; Franca Siena

We present a comprehensive overview of the melt evolution of the upper mantle peridotites and different lava types occurring in the Jurassic Albanide-Hellenide ophiolites, based on new and extant geochemical data and trace element modeling. Peridotites consist of lherzolites and harzburgites that are variably depleted, and show increasing light rare earth element (LREE) enrichment with increasing whole-rock depletion. The spatial-temporal relationships of volcanic rocks indicate four discrete types with progressively younging ages: (1) normal midoceanic ridge basalts (N-MORBs); (2) medium-Ti basalts (MTBs); (3) island arc tholeiitic (IAT) basalts; (4) boninitic rocks. Our REE modeling reveals the following results. (1) Moderately depleted lherzolites represent N-MORB mantle residua produced by 10%–20% partial melting of a depleted MORB mantle source. Melt extraction formed N-MORB lavas. (2) Residual lherzolite underwent 5%–8% partial melting without any subduction influence, producing MTB magmas. (3) Following subduction initiation, these refractory lherzolites were enriched in LREEs by subduction-derived fluids. Their partial melting (~10%–20%) generated IAT magmas. (4) With continued subduction, the highly depleted residual mantle left after the previous melting events underwent significant LREE enrichment and high degree (15%–25%) partial melting, producing the youngest, boninitic rocks. The residual mantle after boninitic melt extraction is represented by extremely refractory harzburgites. This progressive melt evolution of the upper mantle peridotites and volcanic rock types is compatible with that of the subduction initiation–related magmatism and mantle dynamics in the Izu-Bonin-Mariana arc-trench rollback system, and indicates a time-progressive mantle-melt evolution in the upper plate of the Tethyan subduction system. LITHOSPHERE; v. 10; no. 1; p. 35–53; GSA Data Repository Item 2017330 | Published online 14 September 2017 https://doi.org/10.1130/L602.1


Lithos | 2010

Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean

Emilio Saccani; Morteza Delavari; Luigi Beccaluva; Sadraddin Amini

This study is focused on slide blocks including oceanic lavas associated with pelagic sediments within the eastern part of the Ankara Melange. A detailed petrological characterization of the volcanic rocks and a detailed biochronological investigation of the associated radiolarian cherts in eight sections (east of Ankara) was carried out. The volcanic rocks are largely represented by basalts and minor ferrobasalts and trachytes. They show different geochemical affinities and overlapping ages including: (a) Late Jurassic – Early Cretaceous garnet-influenced MORB (middle late Oxfordian to late Kimmeridgian–early Tithonian and early–early late Tithonian; late Valanginian–early Barremian); (b) Early Cretaceous enriched-MORB (middle late Barremian–early early Aptian; Valanginian to middle Aptian–early Albian); (c) Middle Jurassic plume-type MORB (early–middle Bajocian to late Bathonian–early Callovian); (d) Late Jurassic – Early Cretaceous alkaline basalts (middle–late Oxfordian to late Kimmeridgian–early Tithonian; late Valanginian to late Hauterivian). All rock types show a clear garnet signature, as testified to by their high MREE/HREE (middle rare earth element/heavy rare earth element) ratios. The coexistence of chemically different rock types from Middle Jurassic to Early Cretaceous times suggests that they were formed in a mid-ocean ridge setting from partial melting of a highly heterogeneous mantle characterized by the extensive occurrence of OIB-metasomatized portions, which were likely inherited from Triassic mantle plume activity associated with the continental rift and opening of the Neotethys branch.

Collaboration


Dive into the Emilio Saccani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Padoa

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge