Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily C. Baechler is active.

Publication


Featured researches published by Emily C. Baechler.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus

Emily C. Baechler; Franak Batliwalla; George Karypis; Patrick M. Gaffney; Ward Ortmann; Karl J. Espe; Katherine B. Shark; William J. Grande; Karis M. Hughes; Vivek Kapur; Peter K. Gregersen; Timothy W. Behrens

Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression “signature” served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.


Nature Genetics | 2008

Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM , PXK , KIAA1542 and other loci

John B. Harley; Marta E. Alarcón-Riquelme; Lindsey A. Criswell; Chaim O. Jacob; Robert P. Kimberly; Kathy L. Moser; Betty P. Tsao; Timothy J. Vyse; Carl D. Langefeld; Swapan K. Nath; Joel M. Guthridge; Beth L. Cobb; Daniel B. Mirel; Miranda C. Marion; Adrienne H. Williams; Jasmin Divers; Wei Wang; Summer G Frank; Bahram Namjou; Stacey Gabriel; Annette Lee; Peter K. Gregersen; Timothy W. Behrens; Kimberly E. Taylor; Michelle M. A. Fernando; Raphael Zidovetzki; Patrick M. Gaffney; Jeffrey C. Edberg; John D. Rioux; Joshua O. Ojwang

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ∼30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio = 0.82–1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ⩾9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.


American Journal of Human Genetics | 2004

Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE

Chieko Kyogoku; Carl D. Langefeld; Ward Ortmann; Annette Lee; Scott Selby; Victoria E.H. Carlton; Monica Chang; Paula S. Ramos; Emily C. Baechler; Franak Batliwalla; Jill Novitzke; Adrienne H. Williams; Clarence Gillett; Peter R. Rodine; Robert R. Graham; Kristin Ardlie; Patrick M. Gaffney; Kathy L. Moser; Michelle Petri; Ann B. Begovich; Peter K. Gregersen; Timothy W. Behrens

We genotyped 525 independent North American white individuals with systemic lupus erythematosus (SLE) for the PTPN22 R620W polymorphism and compared the results with data generated from 1,961 white control individuals. The R620W SNP was associated with SLE (genotypic P=.00009), with estimated minor (T) allele frequencies of 12.67% in SLE cases and 8.64% in controls. A single copy of the T allele (W620) increases risk of SLE (odds ratio [OR]=1.37; 95% confidence interval [CI] 1.07-1.75), and two copies of the allele more than double this risk (OR=4.37; 95% CI 1.98-9.65). Together with recent evidence showing association of this SNP with type 1 diabetes and rheumatoid arthritis, these data provide compelling evidence that PTPN22 plays a fundamental role in regulating the immune system and the development of autoimmunity.


Nature Genetics | 2009

A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus

Vesela Gateva; Johanna K. Sandling; Geoff Hom; Kimberly E. Taylor; Sharon A. Chung; Xin Sun; Ward Ortmann; Roman Kosoy; Ricardo C. Ferreira; Gunnel Nordmark; Iva Gunnarsson; Elisabet Svenungsson; Leonid Padyukov; Gunnar Sturfelt; Andreas Jönsen; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Emily C. Baechler; Elizabeth E. Brown; Graciela S. Alarcón; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Gerald McGwin; John D. Reveille; Luis M. Vilá; Robert P. Kimberly; Susan Manzi; Michelle Petri; Annette Lee; Peter K. Gregersen

Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.


Nature Genetics | 2006

A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.

Robert R. Graham; Sergey V. Kozyrev; Emily C. Baechler; M. V. Prasad Linga Reddy; Robert M. Plenge; Jason W. Bauer; Ward Ortmann; Thearith Koeuth; Ma Francisca Gonzalez Escribano; Bernardo A. Pons-Estel; Michelle Petri; Mark J. Daly; Peter K. Gregersen; Javier Martin; David Altshuler; Timothy W. Behrens; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 × 10−16) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5′ donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus

Robert R. Graham; Chieko Kyogoku; Snaevar Sigurdsson; Irina A. Vlasova; Leela Davies; Emily C. Baechler; Robert M. Plenge; Thearith Koeuth; Ward Ortmann; Geoffrey Hom; Jason W. Bauer; Clarence Gillett; Noël P. Burtt; Deborah S. Cunninghame Graham; Robert C. Onofrio; Michelle Petri; Iva Gunnarsson; Elisabet Svenungsson; Lars Rönnblom; Gunnel Nordmark; Peter K. Gregersen; Kathy L. Moser; Patrick M. Gaffney; Lindsey A. Criswell; Timothy J. Vyse; Ann-Christine Syvänen; Paul R. Bohjanen; Mark J. Daly; Timothy W. Behrens; David Altshuler

Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3′ UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.


American Journal of Human Genetics | 2002

Visualizing Human Leukocyte Antigen Class II Risk Haplotypes in Human Systemic Lupus Erythematosus

Robert R. Graham; Ward Ortmann; Carl D. Langefeld; Damini Jawaheer; Scott Selby; Peter R. Rodine; Emily C. Baechler; Kristine E. Rohlf; Katherine B. Shark; Karl J. Espe; Linda E. Green; Rajan P. Nair; Philip E. Stuart; James T. Elder; Richard A. King; Kathy L. Moser; Patrick M. Gaffney; Teodorica L. Bugawan; Henry A. Erlich; Stephen S. Rich; Peter K. Gregersen; Timothy W. Behrens

Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.


Arthritis & Rheumatism | 2009

Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study.

Jason W. Bauer; Michelle Petri; Franak Batliwalla; Thearith Koeuth; Joseph C. Wilson; Catherine Slattery; Angela Panoskaltsis-Mortari; Peter K. Gregersen; Timothy W. Behrens; Emily C. Baechler

OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by unpredictable flares of disease activity and irreversible damage to multiple organ systems. An earlier study showed that SLE patients carrying an interferon (IFN) gene expression signature in blood have elevated serum levels of IFN-regulated chemokines. These chemokines were associated with more-severe and active disease and showed promise as SLE disease activity biomarkers. This study was designed to validate IFN-regulated chemokines as biomarkers of SLE disease activity in 267 SLE patients followed up longitudinally. METHODS To validate the potential utility of serum chemokine levels as biomarkers of disease activity, we measured serum levels of CXCL10 (IFNgamma-inducible 10-kd protein), CCL2 (monocyte chemotactic protein 1), and CCL19 (macrophage inflammatory protein 3beta) in an independent cohort of 267 SLE patients followed up longitudinally over 1 year (1,166 total clinic visits). RESULTS Serum chemokine levels correlated with lupus activity at the current visit (P = 2 x 10(-10)), rising at the time of SLE flare (P = 2 x 10(-3)) and decreasing as disease remitted (P = 1 x 10(-3)); they also performed better than the currently available laboratory tests. Chemokine levels measured at a single baseline visit in patients with a Systemic Lupus Erythematosus Disease Activity Index of < or =4 were predictive of lupus flare over the ensuing year (P = 1 x 10(-4)). CONCLUSION Monitoring serum chemokine levels in SLE may improve the assessment of current disease activity, the prediction of future disease flares, and the overall clinical decision-making.


Genes and Immunity | 2009

Peripheral blood gene expression profiling in Sjögren's syndrome.

Eshrat S. Emamian; Joanlise M. Leon; Christopher J. Lessard; Martha E. Grandits; Emily C. Baechler; Patrick M. Gaffney; Barbara M. Segal; Nelson L. Rhodus; Kathy L. Moser

Sjögrens syndrome (SS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands. The affected cases commonly present with oral and ocular dryness, which is thought to be the result of inflammatory cell-mediated gland dysfunction. To identify important molecular pathways involved in SS, we used high-density microarrays to define global gene expression profiles in the peripheral blood. We first analyzed 21 SS cases and 23 controls, and identified a prominent pattern of overexpressed genes that are inducible by interferons (IFNs). These results were confirmed by evaluation of a second independent data set of 17 SS cases and 22 controls. Additional inflammatory and immune-related pathways with altered expression patterns in SS cases included B- and T-cell receptor, insulin-like growth factor-1, granulocyte macrophage-colony stimulating factor, peroxisome proliferator-activated receptor-α/retinoid X receptor-α and PI3/AKT signaling. Exploration of these data for relationships to clinical features of disease showed that expression levels for most interferon-inducible genes were positively correlated with titers of anti-Ro/SSA (P<0.001) and anti-La/SSB (P<0.001) autoantibodies. Diagnostic and therapeutic approaches targeting interferon-signaling pathway may prove most effective in the subset of SS cases that produce anti-Ro/SSA and anti-La/SSB autoantibodies. Our results strongly support innate and adaptive immune processes in the pathogenesis of SS, and provide numerous candidate disease markers for further study.


Genes and Immunity | 2005

Peripheral blood gene expression profiling in rheumatoid arthritis

Franak Batliwalla; Emily C. Baechler; Xiangli Xiao; Wentian Li; Sundaravadivel Balasubramanian; Houman Khalili; Aarti Damle; Ward Ortmann; Antonella Perrone; Aaron B. Kantor; Pércio S. Gulko; Marlena Kern; Richard A. Furie; Timothy W. Behrens; Peter K. Gregersen

We carried out gene expression profiling of peripheral blood mononuclear cells (PBMCs) in 29 patients with active rheumatoid arthritis (RA) and 21 control subjects using Affymetrix U95Av2 arrays. Using cluster analysis, we observed a significant alteration in the expression pattern of 81 genes (P<0.001) in the PBMCs of RA patients compared with controls. Many of these genes correlated with differences in monocyte counts between the two study populations, and we show that a large fraction of these genes are specifically expressed at high levels in monocytes. In addition, a logistic regression analysis was performed to identify genes that performed best in the categorization of RA and control samples. Glutaminyl cyclase, IL1RA, S100A12 (also known as calgranulin or EN-RAGE) and Grb2-associated binding protein (GAB2) were among the top discriminators. Along with previous data, the overexpression of S100A12 in RA patients emphasizes the likely importance of RAGE pathways in disease pathogenesis. The altered expression of GAB2, an intracellular adaptor molecule involved in regulating phosphatase function, is of particular interest given the recent identification of the intracellular phosphatase PTPN22 as a risk gene for RA. These data suggest that a detailed study of gene expression patterns in peripheral blood can provide insight into disease pathogenesis. However, it is also clear that substantially larger sample sizes will be required in order to evaluate fully gene expression profiling as a means of identifying disease subsets, or defining biomarkers of outcome and response to therapy in RA.

Collaboration


Dive into the Emily C. Baechler's collaboration.

Top Co-Authors

Avatar

Peter K. Gregersen

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Gaffney

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy L. Moser

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Michelle Petri

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franak Batliwalla

North Shore-LIJ Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge