Emily Dimmer
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Dimmer.
Nucleic Acids Research | 2004
Midori A. Harris; Jennifer I. Clark; Amelia Ireland; Jane Lomax; Michael Ashburner; R. Foulger; K. Eilbeck; Suzanna E. Lewis; B. Marshall; Christopher J. Mungall; John Richter; Gerald M. Rubin; Judith A. Blake; Mary E. Dolan; Harold J. Drabkin; Janan T. Eppig; David P. Hill; Li Ni; Martin Ringwald; Rama Balakrishnan; J. M. Cherry; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Robert S. Nash; Anand Sethuraman
The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.
Nucleic Acids Research | 2004
Evelyn Camon; Michele Magrane; Daniel Barrell; Vivian Lee; Emily Dimmer; John Maslen; David Binns; Nicola Harte; Rodrigo Lopez; Rolf Apweiler
The Gene Ontology Annotation (GOA) database (http://www.ebi.ac.uk/GOA) aims to provide high-quality electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO). As a supplementary archive of GO annotation, GOA promotes a high level of integration of the knowledge represented in UniProt with other databases. This is achieved by converting UniProt annotation into a recognized computational format. GOA provides annotated entries for nearly 60,000 species (GOA-SPTr) and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. By integrating GO annotations from other model organism groups, GOA consolidates specialized knowledge and expertise to ensure the data remain a key reference for up-to-date biological information. Furthermore, the GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation of proteins likely to benefit human health and disease. In addition to a non-redundant set of annotations to the human proteome (GOA-Human) and monthly releases of its GO annotation for all species (GOA-SPTr), a series of GO mapping files and specific cross-references in other databases are also regularly distributed. GOA can be queried through a simple user-friendly web interface or downloaded in a parsable format via the EBI and GO FTP websites. The GOA data set can be used to enhance the annotation of particular model organism or gene expression data sets, although increasingly it has been used to evaluate GO predictions generated from text mining or protein interaction experiments. In 2004, the GOA team will build on its success and will continue to supplement the functional annotation of UniProt and work towards enhancing the ability of scientists to access all available biological information. Researchers wishing to query or contribute to the GOA project are encouraged to email: [email protected].
Nucleic Acids Research | 2007
Samuel Kerrien; Yasmin Alam-Faruque; Bruno Aranda; I. Bancarz; Alan Bridge; C. Derow; Emily Dimmer; Marc Feuermann; A. Friedrichsen; Rachael P. Huntley; C. Kohler; Jyoti Khadake; Catherine Leroy; A. Liban; C. Lieftink; Luisa Montecchi-Palazzi; Sandra Orchard; Judith E. Risse; Karine Robbe; Bernd Roechert; David Thorneycroft; Y. Zhang; Rolf Apweiler; Henning Hermjakob
IntAct is an open source database and software suite for modeling, storing and analyzing molecular interaction data. The data available in the database originates entirely from published literature and is manually annotated by expert biologists to a high level of detail, including experimental methods, conditions and interacting domains. The database features over 126 000 binary interactions extracted from over 2100 scientific publications and makes extensive use of controlled vocabularies. The web site provides tools allowing users to search, visualize and download data from the repository. IntAct supports and encourages local installations as well as direct data submission and curation collaborations. IntAct source code and data are freely available from .
Nucleic Acids Research | 2008
Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong
The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.
Nucleic Acids Research | 2009
Daniel Barrell; Emily Dimmer; Rachael P. Huntley; David Binns; Claire O'Donovan; Rolf Apweiler
The Gene Ontology Annotation (GOA) project at the EBI (http://www.ebi.ac.uk/goa) provides high-quality electronic and manual associations (annotations) of Gene Ontology (GO) terms to UniProt Knowledgebase (UniProtKB) entries. Annotations created by the project are collated with annotations from external databases to provide an extensive, publicly available GO annotation resource. Currently covering over 160 000 taxa, with greater than 32 million annotations, GOA remains the largest and most comprehensive open-source contributor to the GO Consortium (GOC) project. Over the last five years, the group has augmented the number and coverage of their electronic pipelines and a number of new manual annotation projects and collaborations now further enhance this resource. A range of files facilitate the download of annotations for particular species, and GO term information and associated annotations can also be viewed and downloaded from the newly developed GOA QuickGO tool (http://www.ebi.ac.uk/QuickGO), which allows users to precisely tailor their annotation set.
Bioinformatics | 2009
David Binns; Emily Dimmer; Rachael P. Huntley; Daniel Barrell; Claire O'Donovan; Rolf Apweiler
Summary: QuickGO is a web-based tool that allows easy browsing of the Gene Ontology (GO) and all associated electronic and manual GO annotations provided by the GO Consortium annotation groups QuickGO has been a popular GO browser for many years, but after a recent redevelopment it is now able to offer a greater range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. Availability and Implementation: QuickGO has implemented in JavaScript, Ajax and HTML, with all major browsers supported. It can be queried online at http://www.ebi.ac.uk/QuickGO. The software for QuickGO is freely available under the Apache 2 licence and can be downloaded from http://www.ebi.ac.uk/QuickGO/installation.html Contact: [email protected]; [email protected]
Nucleic Acids Research | 2012
Emily Dimmer; Rachael P. Huntley; Yasmin Alam-Faruque; Tony Sawford; Claire O'Donovan; María Martín; Benoit Bely; Paul Browne; Wei Mun Chan; Ruth Eberhardt; Michael Gardner; Kati Laiho; D Legge; Michele Magrane; Klemens Pichler; Diego Poggioli; Harminder Sehra; Andrea H. Auchincloss; Kristian B. Axelsen; Marie-Claude Blatter; Emmanuel Boutet; Silvia Braconi-Quintaje; Lionel Breuza; Alan Bridge; Elizabeth Coudert; Anne Estreicher; L Famiglietti; Serenella Ferro-Rojas; Marc Feuermann; Arnaud Gos
The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.
BMC Bioinformatics | 2005
Evelyn Camon; Daniel Barrell; Emily Dimmer; Vivian Lee; Michele Magrane; John Maslen; David Binns; Rolf Apweiler
BackgroundThe Gene Ontology Annotation (GOA) database http://www.ebi.ac.uk/GOA aims to provide high-quality supplementary GO annotation to proteins in the UniProt Knowledgebase. Like many other biological databases, GOA gathers much of its content from the careful manual curation of literature. However, as both the volume of literature and of proteins requiring characterization increases, the manual processing capability can become overloaded.Consequently, semi-automated aids are often employed to expedite the curation process. Traditionally, electronic techniques in GOA depend largely on exploiting the knowledge in existing resources such as InterPro. However, in recent years, text mining has been hailed as a potentially useful tool to aid the curation process.To encourage the development of such tools, the GOA team at EBI agreed to take part in the functional annotation task of the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) challenge.BioCreAtIvE task 2 was an experiment to test if automatically derived classification using information retrieval and extraction could assist expert biologists in the annotation of the GO vocabulary to the proteins in the UniProt Knowledgebase.GOA provided the training corpus of over 9000 manual GO annotations extracted from the literature. For the test set, we provided a corpus of 200 new Journal of Biological Chemistry articles used to annotate 286 human proteins with GO terms. A team of experts manually evaluated the results of 9 participating groups, each of which provided highlighted sentences to support their GO and protein annotation predictions. Here, we give a biological perspective on the evaluation, explain how we annotate GO using literature and offer some suggestions to improve the precision of future text-retrieval and extraction techniques. Finally, we provide the results of the first inter-annotator agreement study for manual GO curation, as well as an assessment of our current electronic GO annotation strategies.ResultsThe GOA database currently extracts GO annotation from the literature with 91 to 100% precision, and at least 72% recall. This creates a particularly high threshold for text mining systems which in BioCreAtIvE task 2 (GO annotation extraction and retrieval) initial results precisely predicted GO terms only 10 to 20% of the time.ConclusionImprovements in the performance and accuracy of text mining for GO terms should be expected in the next BioCreAtIvE challenge. In the meantime the manual and electronic GO annotation strategies already employed by GOA will provide high quality annotations.
PLOS Computational Biology | 2009
Pascale Gaudet; Rex L. Chisholm; Tanya Z. Berardini; Emily Dimmer; Stacia R. Engel; Petra Fey; David P. Hill; Doug Howe; James C. Hu; Rachael P. Huntley; Varsha K. Khodiyar; Ranjana Kishore; Donghui Li; Ruth C. Lovering; Fiona M. McCarthy; Li Ni; Victoria Petri; Deborah A. Siegele; Susan Tweedie; Kimberly Van Auken; Valerie Wood; Siddhartha Basu; Seth Carbon; Mary E. Dolan; Christopher J. Mungall; Kara Dolinski; Paul D. Thomas; Michael Ashburner; Judith A. Blake; J. Michael Cherry
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GOs logical structure and biological content.
Journal of Biomedical Discovery and Collaboration | 2006
Francisco M. Couto; Mário J. Silva; Vivian Lee; Emily Dimmer; Evelyn Camon; Rolf Apweiler; Harald Kirsch; Dietrich Rebholz-Schuhmann
BackgroundAnnotation of proteins with gene ontology (GO) terms is ongoing work and a complex task. Manual GO annotation is precise and precious, but it is time-consuming. Therefore, instead of curated annotations most of the proteins come with uncurated annotations, which have been generated automatically. Text-mining systems that use literature for automatic annotation have been proposed but they do not satisfy the high quality expectations of curators.ResultsIn this paper we describe an approach that links uncurated annotations to text extracted from literature. The selection of the text is based on the similarity of the text to the term from the uncurated annotation. Besides substantiating the uncurated annotations, the extracted texts also lead to novel annotations. In addition, the approach uses the GO hierarchy to achieve high precision. Our approach is integrated into GOAnnotator, a tool that assists the curation process for GO annotation of UniProt proteins.ConclusionThe GO curators assessed GOAnnotator with a set of 66 distinct UniProt/SwissProt proteins with uncurated annotations. GOAnnotator provided correct evidence text at 93% precision. This high precision results from using the GO hierarchy to only select GO terms similar to GO terms from uncurated annotations in GOA. Our approach is the first one to achieve high precision, which is crucial for the efficient support of GO curators. GOAnnotator was implemented as a web tool that is freely available at http://xldb.di.fc.ul.pt/rebil/tools/goa/.