Emily E. Brodsky
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily E. Brodsky.
Reports on Progress in Physics | 2004
Hiroo Kanamori; Emily E. Brodsky
Earthquakes occur as a result of global plate motion. However, this simple picture is far from complete. Some plate boundaries glide past each other smoothly, while others are punctuated by catastrophic failures. Some earthquakes stop after only a few hundred metres while others continue rupturing for a thousand kilometres. Earthquakes are sometimes triggered by other large earthquakes thousands of kilometres away. We address these questions by dissecting the observable phenomena and separating out the quantifiable features for comparison across events. We begin with a discussion of stress in the crust followed by an overview of earthquake phenomenology, focusing on the parameters that are readily measured by current seismic techniques. We briefly discuss how these parameters are related to the amplitude and frequencies of the elastic waves measured by seismometers as well as direct geodetic measurements of the Earths deformation. We then review the major processes thought to be active during the rupture and discuss their relation to the observable parameters. We then take a longer range view by discussing how earthquakes interact as a complex system. Finally, we combine subjects to approach the key issue of earthquake initiation. This concluding discussion will require using the processes introduced in the study of rupture as well as some novel mechanisms. As our observational database improves, our computational ability accelerates and our laboratories become more refined, the next few decades promise to bring more insights on earthquakes and perhaps some answers.
Journal of Geophysical Research | 2003
Emily E. Brodsky; Evelyn Roeloffs; Douglas Woodcock; Ivan Gall; Michael Manga
[1] Large, sustained well water level changes (>10 cm) in response to distant (more than hundreds of kilometers) earthquakes have proven enigmatic for over 30 years. Here we use high sampling rates at a well near Grants Pass, Oregon, to perform the first simultaneous analysis of both the dynamic response of water level and sustained changes, or steps. We observe a factor of 40 increase in the ratio of water level amplitude to seismic wave ground velocity during a sudden coseismic step. On the basis of this observation we propose a new model for coseismic pore pressure steps in which a temporary barrier deposited by groundwater flow is entrained and removed by the more rapid flow induced by the seismic waves. In hydrothermal areas, this mechanism could lead to 4 � 10 � 2 MPa pressure changes and triggered seismicity. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 7209 Seismology: Earthquake dynamics and mechanics; 7212 Seismology: Earthquake ground motions and engineering; 7260 Seismology: Theory and modeling; 7294 Seismology: Instruments and techniques; KEYWORDS: earthquakes, triggering, time-dependent hydrology, fractures Citation: Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga, A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res., 108(B8), 2390, doi:10.1029/2002JB002321, 2003.
Nature | 2006
Karen Rebecca Felzer; Emily E. Brodsky
The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2–6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2–50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults.
Nature | 2006
Jean E. Elkhoury; Emily E. Brodsky; Duncan Carr Agnew
Earthquakes have been observed to affect hydrological systems in a variety of ways—water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24° in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1° per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21–2.1 cm s-1. Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.
Journal of Geophysical Research | 2001
Emily E. Brodsky; Hiroo Kanamori
The heat flow paradox provides evidence that a dynamic weakening mechanism may be important in understanding fault friction and rupture. We present here a specific model for dynamic velocity weakening that uses the mechanics of well-studied industrial bearings to explain fault zone processes. An elevated fluid pressure is generated in a thin film of viscous fluid that is sheared between nearly parallel surface. This lubrication pressure supports part of the load, therefore reducing the normal stress and associated friction across the gap. The pressure also elastically deforms the wall rock. The model is parameterized using the Sommerfeld number, which is a measure of the lubrication pressure normalized by the lithostatic load. For typical values of the material properties, slip distance and velocity, the Sommerfeld number suggests that lubrication is an important process. If the lubrication length scales as the slip distance in an earthquake, the frictional stress during dynamically lubricated large earthquakes is 30% less than the friction with only hydrostatic pore pressure. Elastohydrodynamic lubrication also predicts a decrease in high-frequency (>1 Hz) radiation above a critical slip distance of a few meters. This prediction is well matched by the strong motion data from the 1999 Taiwan earthquake. The observed 2 orders of magnitude variation in scaled radiated energy between small (M_w 6) is also predicted by the lubrication model.
Geology | 2007
Amir Sagy; Emily E. Brodsky; Gary J. Axen
Principal slip surfaces in fault zones accommodate most of the displacement during earthquakes. The topography of these surfaces is integral to earthquake and fault mechanics, but is practically unknown at the scale of earthquake slip. We use new laser-based methods to map exposed fault surfaces over scales of 10 µm to 120 m. These data provide the fi rst quantitative evidence that fault-surface roughness evolves with increasing slip. Thousands of profi les ranging from 10 µm to >100 m in length show that small-slip faults (slip <1 m) are rougher than large-slip faults (slip 10‐100 m or more) parallel to the slip direction. Surfaces of small-slip faults have asperities over the entire range of observed scales, while large-slip fault surfaces are polished, with RMS values of <3 mm on profi les as long as 1‐2 m. The large-slip surfaces show smooth, elongate, quasi-elliptical bumps that are meters long and as high as ~1 m. We infer that these bumps evolve during fault maturation. This difference in geometry implies that the nucleation, growth, and termination of earthquakes on evolved faults are fundamentally different than on new ones.
Reviews of Geophysics | 2012
Michael Manga; Igor A. Beresnev; Emily E. Brodsky; Jean E. Elkhoury; Derek Elsworth; Steve Ingebritsen; David C. Mays; Chi-Yuen Wang
CHANGES IN PERMEABILITY CAUSED BY TRANSIENT STRESSES: FIELD OBSERVATIONS, EXPERIMENTS, AND MECHANISMS Michael Manga, 1 Igor Beresnev, 2 Emily E. Brodsky, 3 Jean E. Elkhoury, 4 Derek Elsworth, 5 S. E. Ingebritsen, 6 David C. Mays, 7 and Chi-Yuen Wang 1 Received 7 November 2011; revised 15 February 2012; accepted 10 March 2012; published 12 May 2012. [ 1 ] Oscillations in stress, such as those created by earth- quakes, can increase permeability and fluid mobility in geo- logic media. In natural systems, strain amplitudes as small as 10 A6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitor- ing permeability in geothermal systems where there is abun- dant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution. Citation: Manga, M., I. Beresnev, E. E. Brodsky, J. E. Elkhoury, D. Elsworth, S. E. Ingebritsen, D. C. Mays, and C.-Y. Wang (2012), Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms, Rev. Geophys., 50, RG2004, doi:10.1029/2011RG000382. INTRODUCTION [ 2 ] The permeability of Earth’s crust is of great interest because it largely governs key geologic processes such as advective transport of heat and solutes and the generation of elevated fluid pressures by processes such as physical com- paction, heating, and mineral dehydration. For an isotropic Department of Earth and Planetary Science, University of California, Berkeley, California, USA. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA. Department of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA. Department of Civil and Environmental Engineering, University of California, Irvine, California, USA. Department of Energy and Mineral Engineering, Center for Geomechanics, Geofluids, and Geohazards, EMS Energy Institute, Pennsylvania State University, University Park, Pennsylvania, USA. U.S. Geological Survey, Menlo Park, California, USA. Department of Civil Engineering, University of Colorado Denver, Denver, Colorado, USA. Corresponding author: M. Manga, Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720, USA. ([email protected]) material, permeability k is defined by Darcy’s law that relates the fluid discharge per unit area q to the gradient of hydraulic head h, q ¼A kgr rh; m where r is the fluid density, m the fluid viscosity and g is gravity. The permeability of common geologic media varies by approximately 16 orders of magnitude, from values as low as 10 A23 m 2 in intact crystalline rock, intact shales, and fault cores, to values as high as 10 A7 m 2 in well-sorted gravels. Nevertheless, despite being highly heterogeneous, perme- ability can be characterized at the crustal scale in a manner that provides useful insight [e.g., Gleeson et al., 2011]. [ 3 ] The responses of hydrologic systems to deformation provide some insight into controls on permeability, in par- ticular its evolution in time. For example, the water level in wells and discharge in rivers have both been observed to change after earthquakes. Because earthquakes produce stresses that can change hydrogeologic properties of the crust, hydrologic responses to earthquakes are expected, especially in the near field (within a fault length of the Copyright 2012 by the American Geophysical Union. Reviews of Geophysics, 50, RG2004 / 2012 1 of 24 Paper number 2011RG000382 8755-1209/12/2011RG000382 RG2004
Science | 2013
Patrick M. Fulton; Emily E. Brodsky; Yoshihiro Kano; Jim Mori; Frederick M. Chester; Tsuyoshi Ishikawa; Robert N. Harris; Weiren Lin; Nobuhisa Eguchi; Sean Toczko; T Expedition; Kr Scientists
Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.
Science | 2013
Kohtaro Ujiie; Hanae Tanaka; Tsubasa Saito; Akito Tsutsumi; Jim Mori; Jun Kameda; Emily E. Brodsky; Frederick M. Chester; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists
Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.
Geophysical Research Letters | 2000
Emily E. Brodsky; Vassilis Karakostas; Hiroo Kanamori
The M_w = 7.4 Izmit, Turkey earthquake triggered widespread regional seismicity in Greece over a study region extending from 400 km to nearly 1000 km away from the epicenter. Small events began immediately after the passage of the mainshock surface waves suggesting that the transient stresses of the seismic waves were the trigger. The increase in cataloged earthquakes in ordinary continental crust is a new observation and is statistically significant at the 95% level. Unlike the previous example of distant triggering during the Landers earthquake, the activated seismicity occurred entirely in non-volcanic areas. The Greek sites were triggered by waves with amplitudes at least a factor of 3 lower than the observed triggering threshold for Imperial Valley. We speculate that dynamic triggering on a regional-scale results in countrywide episodes of increased seismicity, or “superswarms”, in regions with low triggering thresholds such as Greece.