Emily E. Fink
Roswell Park Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily E. Fink.
Molecular Cell | 2014
Shoshanna N. Zucker; Emily E. Fink; Archis Bagati; Sudha Mannava; Anna Bianchi-Smiraglia; Paul N. Bogner; Joseph A. Wawrzyniak; C E Foley; Katerina I. Leonova; Melissa J. Grimm; Kalyana Moparthy; Yurij Ionov; Jianmin Wang; Song Liu; Sandra Sexton; Eugene S. Kandel; Andrei V. Bakin; Yuesheng Zhang; Naftali Kaminski; Brahm H. Segal; Mikhail A. Nikiforov
Reactive oxygen species (ROS) activate NF-E2-related transcription factor 2 (Nrf2), a key transcriptional regulator driving antioxidant gene expression and protection from oxidant injury. Here, we report that in response to elevation of intracellular ROS above a critical threshold, Nrf2 stimulates expression of transcription Kruppel-like factor 9 (Klf9), resulting in further Klf9-dependent increases in ROS and subsequent cell death. We demonstrated that Klf9 independently causes increased ROS levels in various types of cultured cells and in mouse tissues and is required for pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Mechanistically, Klf9 binds to the promoters and alters the expression of several genes involved in the metabolism of ROS, including suppression of thioredoxin reductase 2, an enzyme participating in ROS clearance. Our data reveal an Nrf2-dependent feedforward regulation of ROS and identify Klf9 as a ubiquitous regulator of oxidative stress and lung injury.
American Journal of Pathology | 2013
Sudha Mannava; Kalyana Moparthy; Linda J. Wheeler; Venkatesh Natarajan; Shoshanna N. Zucker; Emily E. Fink; Michael Im; Sheryl A. Flanagan; William C. Burhans; Nathalie C. Zeitouni; Donna S. Shewach; Christopher K. Mathews; Mikhail A. Nikiforov
In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.
Blood | 2012
Sudha Mannava; DaZhong Zhuang; Jayakumar Nair; Rajat Bansal; Joseph A. Wawrzyniak; Shoshanna N. Zucker; Emily E. Fink; Kalyana Moparthy; Qiang Hu; Song Liu; Lawrence H. Boise; Kelvin P. Lee; Mikhail A. Nikiforov
Bortezomib, a therapeutic agent for multiple myeloma (MM) and mantle cell lymphoma, suppresses proteosomal degradation leading to substantial changes in cellular transcriptional programs and ultimately resulting in apoptosis. Transcriptional regulators required for bortezomib-induced apoptosis in MM cells are largely unknown. Using gene expression profiling, we identified 36 transcription factors that displayed altered expression in MM cells treated with bortezomib. Analysis of a publically available database identified Kruppel-like family factor 9 (KLF9) as the only transcription factor with significantly higher basal expression in MM cells from patients who responded to bortezomib compared with nonresponders. We demonstrated that KLF9 in cultured MM cells was up-regulated by bortezomib; however, it was not through the induction of endoplasmic reticulum stress. Instead, KLF9 levels correlated with bortezomib-dependent inhibition of histone deacetylases (HDAC) and were increased by the HDAC inhibitor LBH589 (panobinostat). Furthermore, bortezomib induced binding of endogenous KLF9 to the promoter of the proapoptotic gene NOXA. Importantly, KLF9 knockdown impaired NOXA up-regulation and apoptosis caused by bortezomib, LBH589, or a combination of theses drugs, whereas KLF9 overexpression induced apoptosis that was partially NOXA-dependent. Our data identify KLF9 as a novel and potentially clinically relevant transcriptional regulator of drug-induced apoptosis in MM cells.
Oncogene | 2012
Sudha Mannava; Angela Omilian; Joseph A. Wawrzyniak; Emily E. Fink; DaZhong Zhuang; Jeffrey C. Miecznikowski; James R. Marshall; Maria S. Soengas; Rosalie C. Sears; Carl Morrison; Mikhail A. Nikiforov
Oncoprotein C-MYC is overexpressed in human metastatic melanomas and melanoma-derived cells where it is required for the suppression of oncogene-induced senescence (OIS). The genetic events that maintain high levels of C-MYC in melanoma cells and their role in OIS are unknown. Here we report that C-MYC in cells from several randomly chosen melanoma lines was upregulated at the protein level, and largely because of the increased protein stability. Of all known regulators of C-MYC stability, levels of B56α subunit of the PP2A tumor suppressor complex were substantially suppressed in all human melanoma cells compared with normal melanocytes. Accordingly, immunohistochemical analysis revealed that the lowest and the highest amounts of PP2A-B56α were predominantly detected in metastatic melanoma tissues and in primary melanomas from patients with good clinical outcome, respectively. Importantly, PP2A-B56α overexpression suppressed C-MYC in melanoma cells and induced OIS, whereas depletion of PP2A-B56α in normal human melanocytes upregulated C-MYC protein levels and suppressed BRAFV600E- and, less efficiently, NRASQ61R-induced senescence. Our data reveal a mechanism of C-MYC overexpression in melanoma cells and identify a functional role for PP2A-B56α in OIS of melanocytic cells.
Pharmacological Research | 2016
Brittany C. Lipchick; Emily E. Fink; Mikhail A. Nikiforov
Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.
Oncogene | 2017
Anna Bianchi-Smiraglia; Archis Bagati; Emily E. Fink; Sudha Moparthy; J A Wawrzyniak; E K Marvin; S Battaglia; Peter Jowdy; Masha Kolesnikova; C E Foley; A. E. Berman; N. I. Kozlova; Brittany C. Lipchick; L M Paul-Rosner; Wiam Bshara; Jeffrey J. Ackroyd; Donna S. Shewach; Mikhail A. Nikiforov
Melanoma progression is associated with increased invasion and, often, decreased levels of microphthalmia-associated transcription factor (MITF). Accordingly, downregulation of MITF induces invasion in melanoma cells; however, little is known about the underlying mechanisms. Here, we report for the first time that depletion of MITF results in elevation of intracellular GTP levels and increased amounts of active (GTP-bound) RAC1, RHO-A and RHO-C. Concomitantly, MITF-depleted cells display larger number of invadopodia and increased invasion. We further demonstrate that the gene for guanosine monophosphate reductase (GMPR) is a direct MITF target, and that the partial repression of GMPR accounts mostly for the above phenotypes in MITF-depleted cells. Reciprocally, transactivation of GMPR is required for MITF-dependent suppression of melanoma cell invasion, tumorigenicity and lung colonization. Moreover, loss of GMPR accompanies downregulation of MITF in vemurafenib-resistant BRAFV600E-melanoma cells and underlies the increased invasion in these cells. Our data uncover novel mechanisms linking MITF-dependent inhibition of invasion to suppression of guanylate metabolism.
Cell Death & Differentiation | 2015
Anna Bianchi-Smiraglia; Joseph A. Wawrzyniak; Archis Bagati; E K Marvin; Jeffrey J. Ackroyd; Sudha Moparthy; Wiam Bshara; Emily E. Fink; C E Foley; G. E. Morozevich; A. E. Berman; Donna S. Shewach; Mikhail A. Nikiforov
Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAFV600E or NRASQ61R human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.
Nature Methods | 2017
Anna Bianchi-Smiraglia; Mitra S. Rana; C E Foley; Leslie M. Paul; Brittany C. Lipchick; Sudha Moparthy; Kalyana Moparthy; Emily E. Fink; Archis Bagati; Edward Hurley; Hayley C. Affronti; Andrei V. Bakin; Eugene S. Kandel; Dominic J. Smiraglia; Maria Laura Feltri; Rui Sousa; Mikhail A. Nikiforov
GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. We report the development and characterization of genetically encoded GTP sensors, which we constructed by inserting a circularly permuted yellow fluorescent protein (cpYFP) into a region of the bacterial G protein FeoB that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP created a series of sensors with a wide dynamic range. Critically, in mammalian cells the sensors showed consistent changes in ratiometric signal upon depletion or restoration of GTP pools. We show that these GTP evaluators (GEVALs) are suitable for detection of spatiotemporal changes in GTP levels in living cells and for high-throughput screening of molecules that modulate GTP levels.
Journal of Clinical Investigation | 2018
Anna Bianchi-Smiraglia; Archis Bagati; Emily E. Fink; Hayley C. Affronti; Brittany C. Lipchick; Sudha Moparthy; Mark D. Long; Spencer Rosario; Shivana M. Lightman; Kalyana Moparthy; David W. Wolff; Dong Hyun Yun; Zhannan Han; Anthony Polechetti; Matthew V. Roll; Ilya Gitlin; Katerina I. Leonova; Aryn M. Rowsam; Eugene S. Kandel; Andrei V. Gudkov; P. Leif Bergsagel; Kelvin P. Lee; Dominic J. Smiraglia; Mikhail A. Nikiforov
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Cell Reports | 2018
Emily E. Fink; Sudha Moparthy; Archis Bagati; Anna Bianchi-Smiraglia; Brittany C. Lipchick; David W. Wolff; Matthew V. Roll; Jianmin Wang; Song Liu; Andrei V. Bakin; Eugene S. Kandel; Ann-Hwee Lee; Mikhail A. Nikiforov
SUMMARY Transcription factor XBP1s, activated by endoplasmic reticulum (ER) stress in a dose-dependent manner, plays a central role in adaptive unfolded protein response (UPR) via direct activation of multiple genes controlling protein refolding. Here, we report that elevation of ER stress above a critical threshold causes accumulation of XBP1s protein sufficient for binding to the promoter and activation of a gene encoding a transcription factor KLF9. In comparison to other XBP1s targets, KLF9 promoter contains an evolutionary conserved lower-affinity binding site that requires higher amounts of XBP1s for activation. In turn, KLF9 induces expression of two regulators of ER calcium storage, TMEM38B and ITPR1, facilitating additional calcium release from ER, exacerbation of ER stress, and cell death. Accordingly, Klf9 deficiency attenuates tunicamycin-induced ER stress in mouse liver. These data reveal a role for XBP1s in cytotoxic UPR and provide insights into mechanisms of life-or-death decisions in cells under ER stress.