Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily F. Smith is active.

Publication


Featured researches published by Emily F. Smith.


Journal of Controlled Release | 2015

Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity

Leanne E. Fisher; Andrew L. Hook; Waheed Ashraf; Anfal Yousef; David A. Barrett; David J. Scurr; Xinyong Chen; Emily F. Smith; Michael W. Fay; Christopher Parmenter; Richard Parkinson; Roger Bayston

Catheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce the risk of bacterial colonization of the catheters for long-term users have not been successful, mainly because of the need for long duration of activity in flow conditions. Here we report the results of impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan. In flow experiments, the antimicrobial catheters were able to prevent colonization by common uropathogens Proteus mirabilis, Staphylococcus aureus and Escherichia coli for 7 to 12weeks in vitro compared with 1-3days for other, commercially available antimicrobial catheters currently used clinically. Resistance development was minimized by careful choice of antimicrobial combinations. Drug release profiles and distribution in the polymer, and surface analysis were also carried out and the process had no deleterious effect on the mechanical performance of the catheter or its balloon. The antimicrobial catheter therefore offers for the first time a means of reducing infection and its complications in long-term urinary catheter users.


Chemical Communications | 2005

Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy

Emily F. Smith; Ignacio J. Villar Garcia; D. Briggs; Peter Licence

The in situ monitoring of catalysis in Room Temperature Ionic Liquids (RTILs) is fundamental to the understanding of catalytic processes and the role of RTILs in catalytic turnover; we describe how XPS can be used to give information on both pure RTILs and catalytically-active RTIL-based solutions.


International Journal of Pharmaceutics | 2008

Physical stability of ternary solid dispersions of itraconazole in polyethyleneglycol 6000/hydroxypropylmethylcellulose 2910 E5 blends

Sandrien Janssens; Clive J. Roberts; Emily F. Smith; Guy Van den Mooter

In order to understand the influence of temperature and moisture, polymer blends of polyethyleneglycol 6000 (PEG 6000) and hydroxypropylmethylcellulose 2910 E5 (HPMC 2910 E5) and solid dispersions of itraconazole in these polymer blends were spray dried, further dried for 2 weeks and stored at three different conditions: 25 degrees C, 0% relative humidity (RH); 25 degrees C, 52% RH; 60 degrees C, 0% RH. MTDSC analysis of the polymer blends revealed that at 25 degrees C, 52% RH, PEG 6000 recrystallized to a high extent. At 60 degrees C, 0% RH the two polymers were miscible, probably due to the removal of bound water. In the ternary dispersions the polymers behaved similarly. The crystallinity degree of itraconazole in samples stored at 25 degrees C, 52% RH and at 60 degrees C, 0% RH was increased compared to the samples stored at 25 degrees C, 0% RH, probably due to the plasticizing effect of moisture at 25 degrees C, 52% RH and to an increased mobility at 60 degrees C, 0% RH. XPS analysis revealed a redistribution of itraconazole at the surface as itraconazole recrystallized from the blend. Dissolution tests revealed that a decrease in the itraconazole release was directly related to its crystallinity degree, no correlation was found with the crystallinity degree of PEG 6000.


ACS Nano | 2013

Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111).

Georg Eder; Emily F. Smith; Izabela Cebula; Wolfgang M. Heckl; Peter H. Beton; Markus Lackinger

The polymerization of 1,3,5-tri(4-iodophenyl)benzene (TIPB) on Au(111) through covalent aryl-aryl coupling is accomplished using a solution-based approach and investigated by scanning tunneling microscopy. Drop-casting of the TIPB monomer onto Au(111) at room temperature results in poorly ordered noncovalent arrangements of molecules and partial dehalogenation. However, drop-casting on a preheated Au(111) substrate yields various topologically distinct covalent aggregates and networks. Interestingly, some of these covalent nanostructures do not adsorb directly on the Au(111) surface, but are loosely bound to a disordered layer of a mixture of chemisorbed iodine and molecules, a conclusion that is drawn from STM data and supported by X-ray photoelectron spectroscopy. We argue that the gold surface becomes covered by a strongly chemisorbed iodine monolayer which eventually inhibits further polymerization.


Chemistry: A European Journal | 2009

The Co‐Entrapment of a Homogeneous Catalyst and an Ionic Liquid by a Sol–gel Method: Recyclable Ionogel Hydrogenation Catalysts

Steven J. Craythorne; Kris Anderson; Fabio Lorenzini; Christina McCausland; Emily F. Smith; Peter Licence; Andrew C. Marr; Patricia C. Marr

Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sol-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.


Langmuir | 2012

Surface modification of polyethylene with multi-end-functional polyethylene additives.

Sarah J. Hardman; Lian R. Hutchings; Nigel Clarke; Solomon M. Kimani; Laura L. E. Mears; Emily F. Smith; John R. P. Webster; Richard L. Thompson

We have prepared and characterized a series of multifluorocarbon end-functional polyethylene additives, which when blended with polyethylene matrices increase surface hydrophobicity and lipophobicity. Water contact angles of >112° were observed on spin-cast blended film surfaces containing less than 1% fluorocarbon in the bulk, compared to ~98° in the absence of any additive. Crystallinity in these films gives rise to surface roughness that is an order of magnitude greater than is typical for amorphous spin-cast films but is too little to give rise to superhydrophobicity. X-ray photoelectron spectroscopy (XPS) confirms the enrichment of the multifluorocarbon additives at the air surface by up to 80 times the bulk concentration. Ion beam analysis was used to quantify the surface excess of the additives as a function of composition, functionality, and molecular weight of either blend component. In some cases, an excess of the additives was also found at the substrate interface, indicating phase separation into self-stratified layers. The combination of neutron reflectometry and ion beam analysis allowed the surface excess to be quantified above and below the melting point of the blended films. In these films, where the melting temperatures of the additive and matrix components are relatively similar (within 15 °C), the surface excess is almost independent of whether the blended film is semicrystalline or molten, suggesting that the additive undergoes cocrystallization with the matrix when the blended films are allowed to cool below the melting point.


2D Materials | 2016

Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport

Nilanthy Balakrishnan; C.R. Staddon; Emily F. Smith; Jakub Stec; Garry W. Mudd; O. Makarovsky; Zakhar R. Kudrynskyi; Z. D. Kovalyuk; L. Eaves; A. Patanè; Peter H. Beton

We demonstrate that β-In2Se3 layers with thickness ranging from 2.8 to 100 nm can be grown on SiO2/Si, mica and graphite using a physical vapour transport method. The β-In2Se3 layers are chemically stable at room temperature and exhibit a blue-shift of the photoluminescence emission when the layer thickness is reduced, due to strong quantum confinement of carriers by the physical boundaries of the material. The layers are characterised using Raman spectroscopy and x-ray diffraction from which we confirm lattice constants c = 28.31 ± 0.05 A and a = 3.99 ± 0.02 A. In addition, these layers show high photoresponsivity of up to ~2 × 103 A W−1 at λ = 633 nm, with rise and decay times of τ r = 0.6 ms and τ d = 2.5 ms, respectively, confirming the potential of the as-grown layers for high sensitivity photodetectors.


Scientific Reports | 2016

Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

Yong-Jin Cho; Alex Summerfield; Andrew Davies; T.S. Cheng; Emily F. Smith; Christopher J. Mellor; Andrei N. Khlobystov; C. Thomas Foxon; L. Eaves; Peter H. Beton; S. V. Novikov

We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.


Nature Communications | 2017

Supramolecular networks stabilise and functionalise black phosphorus

Vladimir V. Korolkov; Ivan G. Timokhin; Rolf Haubrichs; Emily F. Smith; Lixu Yang; Sihai Yang; Neil R. Champness; Martin Schröder; Peter H. Beton

The limited stability of the surface of black phosphorus (BP) under atmospheric conditions is a significant constraint on the exploitation of this layered material and its few layer analogue, phosphorene, as an optoelectronic material. Here we show that supramolecular networks stabilised by hydrogen bonding can be formed on BP, and that these monolayer-thick films can passivate the BP surface and inhibit oxidation under ambient conditions. The supramolecular layers are formed by solution deposition and we use atomic force microscopy to obtain images of the BP surface and hexagonal supramolecular networks of trimesic acid and melamine cyanurate (CA.M) under ambient conditions. The CA.M network is aligned with rows of phosphorus atoms and forms large domains which passivate the BP surface for more than a month, and also provides a stable supramolecular platform for the sequential deposition of 1,2,4,5-tetrakis(4-carboxyphenyl)benzene to form supramolecular heterostructures.Few-layered black phosphorus has been exploited in transistors and other devices, but its poor stability under ambient conditions remains problematic. Here, a UK-Swiss collaboration show that a monolayer-thick supramolecular hydrogen-bonded network can protect a black phosphorus surface for over a month.


Chemical Communications | 2007

Water adsorption on a liquid surface

Kevin R. J. Lovelock; Emily F. Smith; Alexey Deyko; Ignacio J. Villar-Garcia; Peter Licence; Robert G. Jones

Monolayer adsorption of water onto an ionic liquid in ultra-high vacuum has been demonstrated, revealing a heat of adsorption which exceeds the heat of absorption into the bulk liquid by approximately 40 kJ mol(-1).

Collaboration


Dive into the Emily F. Smith's collaboration.

Top Co-Authors

Avatar

Peter H. Beton

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Peter Licence

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

L. Eaves

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Briggs

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Michael W. Fay

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Patanè

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Davies

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge