Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily Flashman is active.

Publication


Featured researches published by Emily Flashman.


Circulation Research | 2004

Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease

Emily Flashman; Charles Redwood; Johanna C. Moolman-Smook; Hugh Watkins

Myosin binding protein-C (MyBP-C) is a thick filament–associated protein localized to the crossbridge-containing C zones of striated muscle sarcomeres. The cardiac isoform is composed of eight immunoglobulin I–like domains and three fibronectin 3–like domains and is known to be a physiological substrate of cAMP-dependent protein kinase. MyBP-C contributes to thick filament structure via interactions at its C-terminus with the light meromyosin section of the myosin rod and with titin. The protein also has a role in the regulation of contraction, due to the binding of its N-terminus to the subfragment-2 portion of myosin, which reduces actomyosin ATPase activity; phosphorylation abolishes this interaction, resulting in release of the “brake” on crossbridge cycling. Several structural models of the interaction of MyBP-C with myosin have been proposed, although its precise arrangement on the thick filament remains to be elucidated. Mutations in the gene encoding cardiac MyBP-C are a common cause of hypertrophic cardiomyopathy, and this has led to increased interest in the proteins function. Investigation of disease-causing mutations in domains with unknown function has led to further insights into the mechanism of cMyBP-C action. This Review aims to collate the published data on those aspects of MyBP-C that are well characterized and to consider new and emerging data that further define its structural and regulatory roles and its arrangement in the sarcomere. We also speculate on the mechanisms by which hypertrophic cardiomyopathy–causing truncation and missense mutations affect the normal functioning of the sarcomere.


Biochemical Journal | 2007

Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay.

Dominic Ehrismann; Emily Flashman; David N. Genn; Nicolas Mathioudakis; Kirsty S. Hewitson; Peter J. Ratcliffe; Christopher J. Schofield

The activity and levels of the metazoan HIF (hypoxia-inducible factor) are regulated by its hydroxylation, catalysed by 2OG (2-oxoglutarate)- and Fe(II)-dependent dioxygenases. An oxygen consumption assay was developed and used to study the relationship between HIF hydroxylase activity and oxygen concentration for recombinant forms of two human HIF hydroxylases, PHD2 (prolyl hydroxylase domain-containing protein 2) and FIH (factor inhibiting HIF), and compared with two other 2OG-dependent dioxygenases. Although there are caveats on the absolute values, the apparent K(m) (oxygen) values for PHD2 and FIH were within the range observed for other 2OG oxygenases. Recombinant protein substrates were found to have lower apparent K(m) (oxygen) values compared with shorter synthetic peptides of HIF. The analyses also suggest that human PHD2 is selective for fragments of the C-terminal over the N-terminal oxygen-dependent degradation domain of HIF-1alpha. The present results, albeit obtained under non-physiological conditions, imply that the apparent K(m) (oxygen) values of the HIF hydroxylases enable them to act as oxygen sensors providing their in vivo capacity is appropriately matched to a hydroxylation-sensitive signalling pathway.


Structure | 2009

Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases

Rasheduzzaman Chowdhury; Michael A. McDonough; Jasmin Mecinović; Christoph Loenarz; Emily Flashman; Kirsty S. Hewitson; Carmen Domene; Christopher J. Schofield

The oxygen-dependent hydroxylation of proline residues in the alpha subunit of hypoxia-inducible transcription factor (HIFalpha) is central to the hypoxic response in animals. Prolyl hydroxylation of HIFalpha increases its binding to the von Hippel-Lindau protein (pVHL), so signaling for degradation via the ubiquitin-proteasome system. The HIF prolyl hydroxylases (PHDs, prolyl hydroxylase domain enzymes) are related to the collagen prolyl hydroxylases, but form unusually stable complexes with their Fe(II) cofactor and 2-oxoglutarate cosubstrate. We report crystal structures of the catalytic domain of PHD2, the most important of the human PHDs, in complex with the C-terminal oxygen-dependent degradation domain of HIF-1alpha. Together with biochemical analyses, the results reveal that PHD catalysis involves a mobile region that isolates the hydroxylation site and stabilizes the PHD2.Fe(II).2OG complex. The results will be of use in the design of PHD inhibitors aimed at treating anemia and ischemic disease.


Circulation Research | 2002

Identification of novel interactions between domains of myosin binding protein-C that are modulated by hypertrophic cardiomyopathy missense mutations.

Johanna C. Moolman-Smook; Emily Flashman; Willem J. de Lange; Zhili Li; Valerie A. Corfield; Charles Redwood; Hugh Watkins

Abstract— Cardiac myosin binding protein-C (cMyBPC) is a modular protein consisting of 11 domains whose precise function and sarcomeric arrangement are incompletely understood. Identification of hypertrophic cardiomyopathy (HCM)–causing missense mutations in cMyBPC has highlighted the significance of certain domains. Of particular interest is domain C5, an immunoglobulin-like domain with a cardiac-specific insert, which is of unknown function yet is the site of two HCM-causing missense mutations. To identify interactors with this region, a human cardiac cDNA library was screened in a yeast two-hybrid (Y2H) assay using the C5 sequence as bait. Screening >7×106 clones surprisingly revealed that domain C5 preferentially bound to clones encoding C-terminal fragments of cMyBPC; the interacting region was narrowed to domain C8 by deletion mapping. A surface plasmon resonance assay using purified recombinant cMyBPC domains was used to measure the affinity of C5 and C8 in vitro (Ka=1×105 mol/L−1). This affinity was decreased about 2-fold by the HCM mutation R654H, and by at least 10-fold by the mutation N755K. Further Y2H assays also demonstrated specific binding between domains C7 and C10 of cMyBPC. Based on these novel interactions, and previous biochemical and structural data, we propose that cMyBPC molecules trimerize into a collar around the thick filament, with overlaps of domains C5-C7 of one cMyBPC with C8-C10 of another. We speculate that this interaction may be dynamically formed and released, thereby restricting or favoring cross-bridge formation, respectively. We suggest that the HCM mutations act by altering the cMyBPC collar, indicating its importance in thick filament structure and regulation.


Biochemical Journal | 2010

Investigating the Dependence of the Hypoxia-Inducible Factor Hydroxylases (Factor Inhibiting HIF and Prolyl Hydroxylase Domain 2) on Ascorbate and Other Reducing Agents

Emily Flashman; Sarah Davies; Kar Kheng Yeoh; Christopher J. Schofield

The HIF (hypoxia-inducible factor) hydroxylases [PHDs or EGLNs (prolyl hydroxylases), which in humans are PHD isoforms 1-3, and FIH (factor inhibiting HIF)] regulate HIF levels and activity. These enzymes are Fe(II)/2-oxoglutarate-dependent oxygenases, many of which are stimulated by ascorbate. We have investigated the ascorbate dependence of PHD2-catalysed hydroxylation of two prolyl hydroxylation sites in human HIF-1alpha, and of FIH-catalysed hydroxylation of asparaginyl hydroxylation sites in HIF-1alpha and in a consensus ankyrin repeat domain peptide. The initial rate and extent of hydroxylation was increased in the presence of ascorbate for each of these reactions. When ascorbate was replaced with structural analogues, the results revealed that the ascorbate side chain was not important in its contribution to HIF hydroxylase catalysis, whereas modifications to the ene-diol portion of the molecule negated the ability to promote hydroxylation. We investigated whether alternative reducing agents (glutathione and dithiothreitol) could be used to promote HIF hydroxylase activity, and found partial stimulation of hydroxylation in an apparently enzyme- and substrate-specific manner. The results raise the possibility of developing reducing agents targeted to specific HIF hydroxylase-catalysed reactions.


Journal of Biological Chemistry | 2008

Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases

Emily Flashman; Eleanor A. L. Bagg; Rasheduzzaman Chowdhury; Jasmin Mecinović; Christoph Loenarz; Michael A. McDonough; Kirsty S. Hewitson; Christopher J. Schofield

Hydroxylation of two conserved prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of the α-subunit of hypoxia-inducible factor (HIF) signals for its degradation via the ubiquitin-proteasome pathway. In human cells, three prolyl hydroxylases (PHDs 1–3) belonging to the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family catalyze prolyl hydroxylation with differing selectivity for CODD and NODD. Sequence analysis of the catalytic domains of the PHDs in the light of crystal structures for PHD2, and results for other 2OG oxygenases, suggested that either the C-terminal region or a loop linking two β-strands (β2 and β3 in human PHD2) are important in determining substrate selectivity. Mutation analyses on PHD2 revealed that the β2β3 loop is a major determinant in conferring selectivity for CODD over NODD peptides. A chimeric PHD in which the β2β3 loop of PHD2 was replaced with that of PHD3 displayed an almost complete selectivity for CODD (in competition experiments), as observed for wild-type PHD3. CODD was observed to bind much more tightly to this chimeric protein than the wild type PHD2 catalytic domain.


FEBS Journal | 2010

Evidence for the slow reaction of hypoxia‐inducible factor prolyl hydroxylase 2 with oxygen

Emily Flashman; Lee M. Hoffart; Refaat B. Hamed; J. Martin Bollinger; Carsten Krebs; Christopher J. Schofield

The response of animals to hypoxia is mediated by the hypoxia‐inducible transcription factor. Human hypoxia‐inducible factor is regulated by four Fe(II)‐ and 2‐oxoglutarate‐dependent oxygenases: prolyl hydroxylase domain enzymes 1–3 catalyse hydroxylation of two prolyl‐residues in hypoxia‐inducible factor, triggering its degradation by the proteasome. Factor inhibiting hypoxia‐inducible factor catalyses the hydroxylation of an asparagine‐residue in hypoxia‐inducible factor, inhibiting its transcriptional activity. Collectively, the hypoxia‐inducible factor hydroxylases negatively regulate hypoxia‐inducible factor in response to increasing oxygen concentration. Prolyl hydroxylase domain 2 is the most important oxygen sensor in human cells; however, the underlying kinetic basis of the oxygen‐sensing function of prolyl hydroxylase domain 2 is unclear. We report analyses of the reaction of prolyl hydroxylase domain 2 with oxygen. Chemical quench/MS experiments demonstrate that reaction of a complex of prolyl hydroxylase domain 2, Fe(II), 2‐oxoglutarate and the C‐terminal oxygen‐dependent degradation domain of hypoxia‐inducible factor‐α with oxygen to form hydroxylated C‐terminal oxygen‐dependent degradation domain and succinate is much slower (approximately 100‐fold) than for other similarly studied 2‐oxoglutarate oxygenases. Stopped flow/UV‐visible spectroscopy experiments demonstrate that the reaction produces a relatively stable species absorbing at 320 nm; Mössbauer spectroscopic experiments indicate that this species is likely not a Fe(IV)=O intermediate, as observed for other 2‐oxoglutarate oxygenases. Overall, the results obtained suggest that, at least compared to other studied 2‐oxoglutarate oxygenases, prolyl hydroxylase domain 2 reacts relatively slowly with oxygen, a property that may be associated with its function as an oxygen sensor.


Epigenomics | 2015

Epigenetic regulation by histone demethylases in hypoxia

Rebecca L. Hancock; Kate Dunne; Louise J. Walport; Emily Flashman; Akane Kawamura

The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.


Biochemical Journal | 2007

Localization of the binding site of the C-terminal domain of cardiac myosin-binding protein-C on the myosin rod.

Emily Flashman; Hugh Watkins; Charles Redwood

cMyBP-C [cardiac (MyBP-C) myosin-binding protein-C)] is a sarcomeric protein involved both in thick filament structure and in the regulation of contractility. It is composed of eight IgI-like and three fibronectin-3-like domains (termed C0-C10). Mutations in the gene encoding cMyBP-C are a principal cause of HCM (hypertrophic cardiomyopathy). cMyBP-C binds to the LMM (light meromyosin) portion of the myosin rod via its C-terminal domain, C10. We investigated this interaction in detail to determine whether HCM mutations in beta myosin heavy chain located within the LMM portion alter the binding of cMyBP-C, and to define the precise region of LMM that binds C10 to aid in developing models of the arrangement of MyBP-C on the thick filament. In co-sedimentation experiments recombinant C10 bound full-length LMM with a K(d) of 3.52 microM and at a stoichiometry of 1.14 C10 per LMM. C10 was also shown to bind with similar affinity to LMM containing either the HCM mutations A1379T or S1776G, suggesting that these HCM mutations do not perturb C10 binding. Using a range of N-terminally truncated LMM fragments, the cMyBP-C-binding site on LMM was shown to lie between residues 1554 and 1581. Since it had been reported previously that acidic residues on myosin mediate the C10 interaction, three clusters of acidic amino acids (Glu1554/Glu1555, Glu1571/Glu1573 and Glu1578/Asp1580/Glu1581/Glu1582) were mutated in full-length LMM and the proteins tested for C10 binding. No effect of these mutations on C10 binding was however detected. We interpret our results with respect to the localization of the proposed trimeric collar on the thick filament.


Proceedings of the National Academy of Sciences of the United States of America | 2014

OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation

Rachelle S. Singleton; Phebee Liu-Yi; Fabio Formenti; Wei Ge; Rok Sekirnik; R. Fischer; Julie Adam; Patrick J. Pollard; Alexander Wolf; Armin Thalhammer; Christoph Loenarz; Emily Flashman; Atsushi Yamamoto; Mathew L. Coleman; Benedikt M. Kessler; Pablo Wappner; Christopher J. Schofield; Peter J. Ratcliffe; Matthew E. Cockman

Significance Members of the 2-oxoglutarate (2OG)-dependent oxygenase superfamily catalyze a range of important biological oxidations. Structurally informed bioinformatic predictions suggest that the human genome encodes as yet unassigned members of the superfamily. We describe work demonstrating that 2OG and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is a protein hydroxylase that modifies the small ribosomal subunit protein RPS23 at a conserved prolyl residue in the ribosome-decoding center and that suppression or deletion of OGFOD1 is associated with the activation of translational stress pathways. Together with studies of homologous genes in flies and yeast described in accompanying manuscripts, the work identifies a unique function for 2OG oxygenase-catalyzed hydroxylation in ribosome biology. 2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.

Collaboration


Dive into the Emily Flashman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasmin Mecinović

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge