Emily Hitz
University of Maryland, College Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Hitz.
Advanced Materials | 2017
Chunpeng Yang; Kun Fu; Ying Zhang; Emily Hitz; Liangbing Hu
High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries.
Nano Letters | 2017
Chengwei Wang; Yunhui Gong; Boyang Liu; Kun Fu; Yonggang Yao; Emily Hitz; Yiju Li; Jiaqi Dai; Shaomao Xu; Wei Luo; Eric D. Wachsman; Liangbing Hu
Solid-state electrolytes are known for nonflammability, dendrite blocking, and stability over large potential windows. Garnet-based solid-state electrolytes have attracted much attention for their high ionic conductivities and stability with lithium metal anodes. However, high-interface resistance with lithium anodes hinders their application to lithium metal batteries. Here, we demonstrate an ultrathin, conformal ZnO surface coating by atomic layer deposition for improved wettability of garnet solid-state electrolytes to molten lithium that significantly decreases the interface resistance to as low as ∼20 Ω·cm2. The ZnO coating demonstrates a high reactivity with lithium metal, which is systematically characterized. As a proof-of-concept, we successfully infiltrated lithium metal into porous garnet electrolyte, which can potentially serve as a self-supported lithium metal composite anode having both high ionic and electrical conductivity for solid-state lithium metal batteries. The facile surface treatment method offers a simple strategy to solve the interface problem in solid-state lithium metal batteries with garnet solid electrolytes.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Ying Zhang; Wei Luo; Chengwei Wang; Yiju Li; Chaoji Chen; Jianwei Song; Jiaqi Dai; Emily Hitz; Shaomao Xu; Chunpeng Yang; Yanbin Wang; Liangbing Hu
Significance Li metal is considered as the “Holy Grail” anode for Li batteries due to its highest theoretical capacity and lowest electrochemical potential. However, the infinite volume change during the Li stripping/plating process would lead to issues like solid electrolyte interphase cracks and Li dendrites. This work describes a high-capacity and low-tortuosity Li metal anode, which was prepared by infusing molten Li into carbonized wood channels. The straight channels of carbonized wood acting as an ideal host can effectively accommodate the Li volume change, which delivered a lower overpotential and better cycling performance compared with bare Li metal. This work demonstrated the importance of structure design, especially low-tortuosity Li metal structure, for enabling Li metal anode in high-energy batteries. Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mA⋅cm−2), more-stable stripping/plating profiles, and better cycling performance (∼150 h at 3 mA⋅cm−2) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.
Advanced Materials | 2017
Chaoji Chen; Yiju Li; Jianwei Song; Zhi Yang; Yudi Kuang; Emily Hitz; Chao Jia; Amy Gong; Feng Jiang; J. Y. Zhu; Bao Yang; Jia Xie; Liangbing Hu
Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm-2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications.
Advanced Materials | 2017
Yiju Li; Tingting Gao; Zhi Yang; Chaoji Chen; Wei Luo; Jianwei Song; Emily Hitz; Chao Jia; Yubing Zhou; Boyang Liu; Bao Yang; Liangbing Hu
Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m-2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation.
Nano Letters | 2016
Yanan Chen; Kun Fu; Shuze Zhu; Wei Luo; Yanbin Wang; Yiju Li; Emily Hitz; Yonggang Yao; Jiaqi Dai; Jiayu Wan; Valencia A. Danner; Teng Li; Liangbing Hu
Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.
ACS Nano | 2016
Yonggang Yao; Kun Kelvin Fu; Chaoyi Yan; Jiaqi Dai; Yanan Chen; Yibo Wang; Bilun Zhang; Emily Hitz; Liangbing Hu
High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.
ACS Applied Materials & Interfaces | 2016
Hongbian Li; Fei Shen; Wei Luo; Jiaqi Dai; Xiaogang Han; Yanan Chen; Yonggang Yao; Hongli Zhu; Kun Fu; Emily Hitz; Liangbing Hu
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
Advanced Materials | 2017
Chunpeng Yang; Yonggang Yao; Shuaiming He; Hua Xie; Emily Hitz; Liangbing Hu
To exploit the high energy density of the lithium (Li) metal battery, it is imperative to address the dendrite growth and interface instability of the anode. 3D hosts for Li metal are expected to suppress the growth of Li dendrites. Heterogeneous seeds are effective in guiding Li deposition and realizing spatial control over Li nucleation. Herein, this study shows that ultrafine silver (Ag) nanoparticles, which are synthesized via a novel rapid Joule heating method, can serve as nanoseeds to direct the deposition of Li within the 3D host materials, resolving the problems of the Li metal anode. By optimizing the Joule heating method, ultrafine Ag nanoparticles (≈40 nm) are homogeneously anchored on carbon nanofibers. The Ag nanoseeds effectively reduce the nucleation overpotential of Li and guide the Li deposition in the 3D carbon matrix uniformly, free from the dendrites. A stable and reversible Li metal anode is achieved in virtue of the Ag nanoseeds in the 3D substrate, showing a low overpotential (≈0.025 V) for a long cycle life. The ultrafine nanoseeds achieved by rapid Joule heating render uniform deposition of Li metal anode in 3D hosts, promising a safe and long-life Li metal battery for high-energy applications.
Nano Research | 2017
Ying Zhang; Boyang Liu; Emily Hitz; Wei Luo; Yonggang Yao; Yiju Li; Jiaqi Dai; Chaoji Chen; Yanbin Wang; Chunpeng Yang; Hongbian Li; Liangbing Hu
Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal Al2O3 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm–2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm–2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.