Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily I. Chen is active.

Publication


Featured researches published by Emily I. Chen.


Mbio | 2016

Lambda Interferon Restructures the Nasal Microbiome and Increases Susceptibility to Staphylococcus aureus Superinfection

Paul J. Planet; Dane Parker; Taylor S. Cohen; Hannah Smith; Justinne Leon; Chanelle Ryan; Tobin J. Hammer; Noah Fierer; Emily I. Chen; Alice Prince

ABSTRACT Much of the morbidity and mortality associated with influenza virus respiratory infection is due to bacterial coinfection with pathogens that colonize the upper respiratory tract such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. A major component of the immune response to influenza virus is the production of type I and III interferons. Here we show that the immune response to infection with influenza virus causes an increase and restructuring of the upper respiratory microbiota in wild-type (WT) mice but not in Il28r−/− mutant mice lacking the receptor for type III interferon. Mice lacking the IL-28 receptor fail to induce STAT1 phosphorylation and expression of its regulator, SOCS1. Il28r−/− mutant mice have increased expression of interleukin-22 (IL-22), as well as Ngal and RegIIIγ, in the nasal cavity, the source of organisms that would be aspirated to cause pneumonia. Proteomic analysis reveals changes in several cytoskeletal proteins that contribute to barrier function in the nasal epithelium that may contribute to the effects of IL-28 signaling on the microbiota. The importance of the effects of IL-28 signaling in the pathogenesis of MRSA pneumonia after influenza virus infection was confirmed by showing that WT mice nasally colonized before or after influenza virus infection had significantly higher levels of infection in the upper airways, as well as significantly greater susceptibility to MRSA pneumonia than Il28r−/− mutant mice did. Our results suggest that activation of the type III interferon in response to influenza virus infection has a major effect in expanding the upper airway microbiome and increasing susceptibility to lower respiratory tract infection. IMPORTANCE S. aureus and influenza virus are important respiratory pathogens, and coinfection with these organisms is associated with significant morbidity and mortality. The ability of influenza virus to increase susceptibility to S. aureus infection is less well understood. We show here that influenza virus leads to a change in the upper airway microbiome in a type III interferon-dependent manner. Mice lacking the type III interferon receptor have altered STAT1 and IL-22 signaling. In coinfection studies, mice without the type III interferon receptor had significantly less nasal S. aureus colonization and subsequent pneumonia than infected WT mice did. This work demonstrates that type III interferons induced by influenza virus contribute to nasal colonization and pneumonia due to S. aureus superinfection. S. aureus and influenza virus are important respiratory pathogens, and coinfection with these organisms is associated with significant morbidity and mortality. The ability of influenza virus to increase susceptibility to S. aureus infection is less well understood. We show here that influenza virus leads to a change in the upper airway microbiome in a type III interferon-dependent manner. Mice lacking the type III interferon receptor have altered STAT1 and IL-22 signaling. In coinfection studies, mice without the type III interferon receptor had significantly less nasal S. aureus colonization and subsequent pneumonia than infected WT mice did. This work demonstrates that type III interferons induced by influenza virus contribute to nasal colonization and pneumonia due to S. aureus superinfection.


International Journal of Radiation Oncology Biology Physics | 2015

Intestinal Microbiota-Derived Metabolomic Blood Plasma Markers for Prior Radiation Injury

Pilib Ó Broin; Bhavapriya Vaitheesvaran; Subhrajit Saha; Kirsten Hartil; Emily I. Chen; Devorah C. Goldman; William H. Fleming; Irwin J. Kurland; Chandan Guha; Aaron Golden

PURPOSE Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. METHODS AND MATERIALS Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. RESULTS We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. CONCLUSIONS Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma.


Molecular Cancer Research | 2015

The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase

Liang-Nian Song; Jose M. Silva; Antonius Koller; Andrew Rosenthal; Emily I. Chen; Edward P. Gelmann

NKX3.1 is a prostate-specific homeodomain protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.1 expression is not only diminished by genetic loss and methylation, but the protein itself is a target for accelerated degradation caused by inflammation that is common in the aging prostate gland. NKX3.1 degradation is activated by phosphorylation at C-terminal serine residues that mediate ubiquitination and protein turnover. Because NKX3.1 is haploinsufficient, strategies to increase its protein stability could lead to new therapies. Here, a high-throughput screen was developed using an siRNA library for kinases that mediate NKX3.1 degradation. This approach identified several candidates, of which DYRK1B, a kinase that is subject to gene amplification and overexpression in other cancers, had the greatest impact on NKX3.1 half-life. Mechanistically, NKX3.1 and DYRK1B were shown to interact via the DYRK1B kinase domain. In addition, an in vitro kinase assay showed that DYRK1B phosphorylated NKX3.1 at serine 185, a residue critical for NKX3.1 steady-state turnover. Lastly, small-molecule inhibitors of DYRK1B prolonged NKX3.1 half-life. Thus, DYRK1B is a target for enzymatic inhibition in order to increase cellular NKX3.1. Implications: DYRK1B is a promising and novel kinase target for prostate cancer treatment mediated by enhancing NKX3.1 levels. Mol Cancer Res; 13(5); 913–22. ©2015 AACR.


PLOS ONE | 2015

Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology

Emily I. Chen; Katherine D. Crew; Meghna S. Trivedi; Danielle Awad; Mathew S. Maurer; Kevin Kalinsky; Antonius Koller; Purvi Patel; Jenny Kim Kim; Dawn L. Hershman

Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann–Whitney–Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity-associated biomarkers can be further validated in larger retrospective cohorts for their utility in identifying patients at high risk for CIPN.


Circulation | 2018

MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation

Xiaokan Zhang; Ruiping Ji; Xianghai Liao; Estibaliz Castillero; Peter J. Kennel; Danielle L. Brunjes; Marcus Franz; Sven Möbius-Winkler; Konstantinos Drosatos; Isaac George; Emily I. Chen; P.C. Colombo; P. Christian Schulze

Background: Heart failure leads to mitochondrial dysfunction and metabolic abnormalities of the failing myocardium coupled with an energy-depleted state and cardiac remodeling. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in the maintenance of mitochondrial function through regulating the mitochondrial acetylome. It is interesting to note that unique cardiac and systemic microRNAs have been shown to play an important role in cardiac remodeling by modulating key signaling elements in the myocardium. Methods: Cellular signaling was analyzed in human cardiomyocyte-like AC16 cells, and acetylation levels in rodent models of SIRT3–/–and transgenic microRNA-195 (miR-195) overexpression were compared with wild type. Luciferase assays, Western blotting, immunoprecipitation assays, and echocardiographic analysis were performed. Enzymatic activities of pyruvate dehydrogenase (PDH) and ATP synthase were measured. Results: In failing human myocardium, we observed induction of miR-195 along with decreased expression of the mitochondrial deacetylase SIRT3 that was associated with increased global protein acetylation. We further investigated the role of miR-195 in SIRT3-mediated metabolic processes and its impact on regulating enzymes involved in deacetylation. Proteomic analysis of the total acetylome showed increased overall acetylation, and specific lysine acetylation of 2 central mitochondrial metabolic enzymes, PDH and ATP synthase, as well. miR-195 downregulates SIRT3 expression through direct 3′-untranslated region targeting. Treatments with either sirtuin inhibitor nicotinamide, small interfering RNA–mediated SIRT3 knockdown or miR-195 overexpression enhanced acetylation of PDH complex and ATP synthase. This effect diminished PDH and ATP synthase activity and impaired mitochondrial respiration.SIRT3–/– and miR-195 transgenic mice consistently showed enhanced global protein acetylation, including PDH complex and ATP synthase, associated with decreased enzymatic activity. Conclusions: Altogether, these data suggest that increased levels of miR-195 in failing myocardium regulate a novel pathway that involves direct SIRT3 suppression and enzymatic inhibition via increased acetylation of PDH and ATP synthase that are essential for cardiac energy metabolism.


BMC Cancer | 2016

Mitogen-activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival

Anna Afasizheva; Alexus Devine; Heather Tillman; King Leung Fung; Wilfred D. Vieira; Benjamin H. Blehm; Yorihisa Kotobuki; Ben Busby; Emily I. Chen; Kandice Tanner

BackgroundIntrinsic and acquired resistance to drug therapies remains a challenge for malignant melanoma patients. Intratumoral heterogeneities within the tumor microenvironment contribute additional complexity to the determinants of drug efficacy and acquired resistance.MethodsWe use 3D biomimetic platforms to understand dynamics in extracellular matrix (ECM) biogenesis following pharmaceutical intervention against mitogen-activated protein kinases (MAPK) signaling. We further determined temporal evolution of secreted ECM components by isogenic melanoma cell clones.ResultsWe found that the cell clones differentially secrete and assemble a myriad of ECM molecules into dense fibrillar and globular networks. We show that cells can modulate their ECM biosynthesis in response to external insults. Fibronectin (FN) is one of the key architectural components, modulating the efficacy of a broad spectrum of drug therapies. Stable cell lines engineered to secrete minimal levels of FN showed a concomitant increase in secretion of Tenascin-C and became sensitive to BRAFV600E and ERK inhibition as clonally- derived 3D tumor aggregates. These cells failed to assemble exogenous FN despite maintaining the integrin machinery to facilitate cell- ECM cross-talk. We determined that only clones that increased FN production via p38 MAPK and β1 integrin survived drug treatment.ConclusionsThese data suggest that tumor cells engineer drug resistance by altering their ECM biosynthesis. Therefore, drug treatment may induce ECM biosynthesis, contributing to de novo resistance.


Scientific Reports | 2018

Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model

Younghyun Lee; Monica Pujol Canadell; Igor Shuryak; Jay R. Perrier; Maria Taveras; Purvi Patel; Antonius Koller; Lubomir B. Smilenov; David J. Brenner; Emily I. Chen; Helen Turner

After a radiological incident, there is an urgent need for fast and reliable bioassays to identify radiation-exposed individuals within the first week post exposure. This study aimed to identify candidate radiation-responsive protein biomarkers in human lymphocytes in vivo using humanized NOD scid gamma (Hu-NSG) mouse model. Three days after X-irradiation (0–2 Gy, 88 cGy/min), human CD45+ lymphocytes were collected from the Hu-NSG mouse spleen and quantitative changes in the proteome of the human lymphocytes were analysed by mass spectrometry. Forty-six proteins were differentially expressed in response to radiation exposure. FDXR, BAX, DDB2 and ACTN1 proteins were shown to have dose-dependent response with a fold change greater than 2. When these proteins were used to estimate radiation dose by linear regression, the combination of FDXR, ACTN1 and DDB2 showed the lowest mean absolute errors (≤0.13 Gy) and highest coefficients of determination (R2 = 0.96). Biomarker validation studies were performed in human lymphocytes 3 days after irradiation in vivo and in vitro. In conclusion, this is the first study to identify radiation-induced human protein signatures in vivo using the humanized mouse model and develop a protein panel which could be used for the rapid assessment of absorbed dose 3 days after radiation exposure.


Oncogene | 2018

hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis

Francesca Di Modugno; Sheila Spada; Belinda Palermo; Paolo Visca; Pierluigi Iapicca; Anna Di Carlo; Barbara Antoniani; Isabella Sperduti; Anna Di Benedetto; Irene Terrenato; Marcella Mottolese; Francesco Gandolfi; Francesco Facciolo; Emily I. Chen; Martin A. Schwartz; Angela Santoni; Mina J. Bissell; Paola Nisticò

We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates β1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene β1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases β1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including β1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable β1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.


Archive | 2017

Proteomics Analysis of Circulating Serum Exosomes

Antonius Koller; Purvi Patel; Jenny Kim Kim; Emily I. Chen

Proteomics characterization of biofluids, such as urine and plasma, has been explored for the discovery of predictive, prognostic, and mechanistic biomarkers of diseases and tissue injury. Here we describe comprehensive characterization of protein cargos from cell-derived secreted vesicles (extracellular vesicles or exosome) for biomarker discovery using the mass spectrometry-based technology.


BMC Biochemistry | 2016

Auto-thiophosphorylation activity of Src tyrosine kinase

M. Zulema Cabail; Emily I. Chen; Antonius Koller; W. Todd Miller

BackgroundIntermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low.ResultsHere, we have characterized the ability of Src to auto-thiophosphorylate. Auto-thiophosphorylation of Src at Tyr416 in the activation loop proceeds efficiently in the presence of Ni2+, resulting in kinase activation. Other tyrosine kinases (Ack1, Hck, and IGF1 receptor) also auto-thiophosphorylate in the presence of Ni2+. Tyr416-thiophosphorylated Src is resistant to dephosphorylation by PTP1B phosphatase.ConclusionsSrc and other tyrosine kinases catalyze auto-thiophosphorylation in the presence of Ni2+. Thiophosphorylation of Src occurs at Tyr416 in the activation loop, and results in enhanced kinase activity. Tyr416-thiophosphorylated Src could serve as a stable, persistently-activated mimic of Src.

Collaboration


Dive into the Emily I. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Purvi Patel

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Danielle L. Brunjes

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Estibaliz Castillero

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Isaac George

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter J. Kennel

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Donna Mancini

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jenny Kim Kim

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

P. Christian Schulze

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

P.C. Colombo

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge