Emily Indriolo
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Indriolo.
Plant Physiology | 2006
Danielle R Ellis; Luke Gumaelius; Emily Indriolo; Ingrid J. Pickering; Jo Ann Banks; David E. Salt
Pteris vittata sporophytes hyperaccumulate arsenic to 1% to 2% of their dry weight. Like the sporophyte, the gametophyte was found to reduce arsenate [As(V)] to arsenite [As(III)] and store arsenic as free As(III). Here, we report the isolation of an arsenate reductase gene (PvACR2) from gametophytes that can suppress the arsenate sensitivity and arsenic hyperaccumulation phenotypes of yeast (Saccharomyces cerevisiae) lacking the arsenate reductase gene ScACR2. Recombinant PvACR2 protein has in vitro arsenate reductase activity similar to ScACR2. While PvACR2 and ScACR2 have sequence similarities to the CDC25 protein tyrosine phosphatases, they lack phosphatase activity. In contrast, Arath;CDC25, an Arabidopsis (Arabidopsis thaliana) homolog of PvACR2 was found to have both arsenate reductase and phosphatase activities. To our knowledge, PvACR2 is the first reported plant arsenate reductase that lacks phosphatase activity. CDC25 protein tyrosine phosphatases and arsenate reductases have a conserved HCX5R motif that defines the active site. PvACR2 is unique in that the arginine of this motif, previously shown to be essential for phosphatase and reductase activity, is replaced with a serine. Steady-state levels of PvACR2 expression in gametophytes were found to be similar in the absence and presence of arsenate, while total arsenate reductase activity in P. vittata gametophytes was found to be constitutive and unaffected by arsenate, consistent with other known metal hyperaccumulation mechanisms in plants. The unusual active site of PvACR2 and the arsenate reductase activities of cell-free extracts correlate with the ability of P. vittata to hyperaccumulate arsenite, suggesting that PvACR2 may play an important role in this process.
The Plant Cell | 2010
Emily Indriolo; GunNam Na; Danielle R Ellis; David E. Salt; Jo Ann Banks
Gametophytes of the fern Pteris vittata can accumulate and tolerate more than 1% of their dry weight as arsenic. The authors provide evidence that the ACR3 arsenic transporter protein plays an important role in tolerance to high levels of arsenic by transporting arsenic into the vacuole. The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms.
The Plant Cell | 2012
Emily Indriolo; Pirashaanthy Tharmapalan; Stephen I. Wright; Daphne R. Goring
The ARC1 E3 ubiquitin ligase was previously shown to be required for self-pollen rejection in Brassica, and this report shows that its function is conserved in other Brassicaceae species. ARC1 was found to be required for self-pollen rejection in Arabidopsis lyrata and was frequently deleted in genomes of Brassicaceae species that had lost this self-incompatibility trait. Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.
The Plant Cell | 2014
Emily Indriolo; Darya Safavian; Daphne R. Goring
This report examines ARC1’s role in reconstituting the self-incompatibility trait in Arabidopsis thaliana and demonstrates an important role for ARC1 in promoting a strong and stable pollen rejection response when expressed with two other A. lyrata self-incompatibility factors. The expression of ARC1 conferred another A. lyrata trait for self-pollen avoidance, termed approach herkogamy. Flowering plants have evolved various strategies for avoiding self-pollen to drive genetic diversity. These strategies include spatially separated sexual organs (herkogamy), timing differences between male pollen release and female pistil receptivity (dichogamy), and self-pollen rejection. Within the Brassicaceae, these outcrossing systems are the evolutionary default state, and many species display these traits, including Arabidopsis lyrata. In contrast to A. lyrata, closely related Arabidopsis thaliana has lost these self-pollen traits and thus represents an excellent system to test genes for reconstructing these evolutionary traits. We previously demonstrated that the ARC1 E3 ligase is required for self-incompatibility in two diverse Brassicaceae species, Brassica napus and A. lyrata, and is frequently deleted in self-compatible species, including A. thaliana. In this study, we examined ARC1’s requirement for reconstituting self-incompatibility in A. thaliana and uncovered an important role for ARC1 in promoting a strong and stable pollen rejection response when expressed with two other A. lyrata self-incompatibility factors. Furthermore, we discovered that ARC1 promoted an approach herkogamous phenotype in A. thaliana flowers. Thus, ARC1’s expression resulted in two different A. lyrata traits for self-pollen avoidance and highlights the key role that ARC1 plays in the evolution and retention of outcrossing systems.
Plant Physiology | 2015
Darya Safavian; Yara Zayed; Emily Indriolo; Laura A. Chapman; Abdalla Ahmed; Daphne R. Goring
Stigma-specific RNA silencing of exocyst genes impairs basal pollen responses in the stigma following compatible pollinations. Initial pollen-pistil interactions in the Brassicaceae are regulated by rapid communication between pollen grains and stigmatic papillae and are fundamentally important, as they are the first step toward successful fertilization. The goal of this study was to examine the requirement of exocyst subunits, which function in docking secretory vesicles to sites of polarized secretion, in the context of pollen-pistil interactions. One of the exocyst subunit genes, EXO70A1, was previously identified as an essential factor in the stigma for the acceptance of compatible pollen in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We hypothesized that EXO70A1, along with other exocyst subunits, functions in the Brassicaceae dry stigma to deliver cargo-bearing secretory vesicles to the stigmatic papillar plasma membrane, under the pollen attachment site, for pollen hydration and pollen tube entry. Here, we investigated the functions of exocyst complex genes encoding the remaining seven subunits, SECRETORY3 (SEC3), SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmas following compatible pollinations. Stigma-specific RNA-silencing constructs were used to suppress the expression of each exocyst subunit individually. The early postpollination stages of pollen grain adhesion, pollen hydration, pollen tube penetration, seed set, and overall fertility were analyzed in the transgenic lines to evaluate the requirement of each exocyst subunit. Our findings provide comprehensive evidence that all eight exocyst subunits are necessary in the stigma for the acceptance of compatible pollen. Thus, this work implicates a fully functional exocyst complex as a component of the compatible pollen response pathway to promote pollen acceptance.
Sexual Plant Reproduction | 2014
Darya Safavian; Muhammad Jamshed; Subramanian Sankaranarayanan; Emily Indriolo; Marcus A. Samuel; Daphne R. Goring
We have previously proposed that Exo70A1 is required in the Brassicaceae stigma to control the early stages of pollen hydration and pollen tube penetration through the stigmatic surface, following compatible pollination. However, recent work has raised questions regarding Arabidopsis thalianaExo70A1’s expression in the stigma and its role in stigma receptivity to compatible pollen. Here, we verified the expression of Exo70A1 in stigmas from three Brassicaceae species and carefully re-examined Exo70A1’s function in the stigmatic papillae. With previous studies showing that high relative humidity can rescue some pollination defects, essentially bypassing the control of pollen hydration by the Brassicaceae dry stigma, the effect of high humidity was investigated on pollinations with the Arabidopsis exo70A1-1 mutant. Pollinations under low relative humidity resulted in a complete failure of wild-type compatible pollen acceptance by the exo70A1-1 mutant stigma as we had previously seen. However, high relative humidity resulted in a partial rescue of the exo70A1-1 stigmatic papillar defect resulting is some wild-type compatible pollen acceptance and seed set. Thus, these results reaffirmed Exo70A1’s proposed role in the stigma regulating compatible pollen hydration and pollen tube entry and demonstrate that high relative humidity can partially bypass these functions.
Journal of Experimental Botany | 2015
Tania V. Humphrey; Katrina E. Haasen; May Grace Aldea-Brydges; He Sun; Yara Zayed; Emily Indriolo; Daphne R. Goring
Summary We established an interaction network among three Arabidopsis PERK receptor-like kinases (8, 9, and 10), two AGC VIII kinases (AGC1-9 and KIPK) and KCBP with a role in negatively regulating root growth.
Frontiers in Plant Science | 2014
Emily Indriolo; Daphne R. Goring
Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family), self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus cysteine rich/S-locus protein 11 (SCR/SP11) ligand and the pistil S receptor kinase (SRK). Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the armadillo repeat containing 1 (ARC1) protein, a member of the plant U-box (PUB) family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1’s conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field.
The Plant Cell | 2014
Daphne R. Goring; Emily Indriolo; Marcus A. Samuel
Following the identification of the male (S-locus Cysteine Rich/S-locus Protein 11) and female (S Receptor kinase [SRK]) factors controlling self-incompatibility in the Brassicaceae, research in this field has focused on understanding the nature of the cellular responses activated by these regulators. We previously identified the ARM Repeat Containing1 (ARC1) E3 ligase as a component of the SRK signaling pathway and demonstrated ARC1’s requirement in the stigma for self-incompatible pollen rejection in Brassica napus, Arabidopsis lyrata, and Arabidopsis thaliana. Here, we discuss our findings on the role of ARC1 in reconstructing a strong and stable A. thaliana self-incompatibility phenotype, in the context of the putative issues outlined in a commentary by Nasrallah and Nasrallah. Additionally, with their proposed standardized strategy for studying self-incompatibility in A. thaliana, we offer our perspective on what constitutes a strong and stable self-incompatibility phenotype in A. thaliana and how this should be investigated and reported to the greater community.
Nature | 2010
Daphne R. Goring; Emily Indriolo
Different versions of the same gene can be either dominant or recessive. A small non-coding RNA mediates such differences in dominance as part of a system that prevents inbreeding in plants.