Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily J. Rendleman is active.

Publication


Featured researches published by Emily J. Rendleman.


Nature Medicine | 2017

Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas

Andrea Piunti; Rintaro Hashizume; Marc A. Morgan; Elizabeth Bartom; Craig Horbinski; Stacy A. Marshall; Emily J. Rendleman; Quanhong Ma; Yoh Hei Takahashi; Ashley R. Woodfin; Alexander V. Misharin; Nebiyu A. Abshiru; Rishi Lulla; Amanda Saratsis; Neil L. Kelleher; C. David James; Ali Shilatifard

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor characterized by rapid and uniform patient demise. A heterozygous point mutation of histone H3 occurs in more than 80% of these tumors and results in a lysine-to-methionine substitution (H3K27M). Expression of this histone mutant is accompanied by a reduction in the levels of polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation (H3K27me3), and this is hypothesized to be a driving event of DIPG oncogenesis. Despite a major loss of H3K27me3, PRC2 activity is still detected in DIPG cells positive for H3K27M. To investigate the functional roles of H3K27M and PRC2 in DIPG pathogenesis, we profiled the epigenome of H3K27M-mutant DIPG cells and found that H3K27M associates with increased H3K27 acetylation (H3K27ac). In accordance with previous biochemical data, the majority of the heterotypic H3K27M-K27ac nucleosomes colocalize with bromodomain proteins at the loci of actively transcribed genes, whereas PRC2 is excluded from these regions; this suggests that H3K27M does not sequester PRC2 on chromatin. Residual PRC2 activity is required to maintain DIPG proliferative potential, by repressing neuronal differentiation and function. Finally, to examine the therapeutic potential of blocking the recruitment of bromodomain proteins by heterotypic H3K27M-K27ac nucleosomes in DIPG cells, we performed treatments in vivo with BET bromodomain inhibitors and demonstrate that they efficiently inhibit tumor progression, thus identifying this class of compounds as potential therapeutics in DIPG.


Nature Genetics | 2017

Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability

Ryan Rickels; Hans Martin Herz; Christie C. Sze; Kaixiang Cao; Marc A. Morgan; Clayton K. Collings; Maria Gause; Yoh Hei Takahashi; Lu Wang; Emily J. Rendleman; Stacy A. Marshall; Annika Krueger; Elizabeth Bartom; Andrea Piunti; Edwin R. Smith; Nebiyu A. Abshiru; Neil L. Kelleher; Dale Dorsett; Ali Shilatifard

Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.


Genes & Development | 2017

SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression.

Kaixiang Cao; Clayton K. Collings; Stacy A. Marshall; Marc A. Morgan; Emily J. Rendleman; Lu Wang; Christie C. Sze; Tianjiao Sun; Elizabeth Bartom; Ali Shilatifard

The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.


Science | 2017

PAF1 regulation of promoter-proximal pause release via enhancer activation

Fei Xavier Chen; Peng Xie; Clayton K. Collings; Kaixiang Cao; Yuki Aoi; Stacy A. Marshall; Emily J. Rendleman; Michal Ugarenko; Patrick A. Ozark; Anda Zhang; Ramin Shiekhattar; Edwin R. Smith; Michael Q. Zhang; Ali Shilatifard

Multitalented enhancers Productive transcription from DNA demands initiation, elongation, and termination. Enhancers are DNA sequences that loop with promoters to initiate transcription. Chen et al. show that enhancers also regulate gene expression by modulating transcription elongation. PAF1, a RNA polymerase II–associated factor, sits on enhancers. This prevents the full activation of the enhancer required for the release of paused polymerase at promoters to achieve successful transcription elongation. Science, this issue p. 1294 Full activation of a subset of enhancers modulates the release of RNA polymerase II at promoters in a PAF1-dependent manner. Gene expression in metazoans is regulated by RNA polymerase II (Pol II) promoter-proximal pausing and its release. Previously, we showed that Pol II–associated factor 1 (PAF1) modulates the release of paused Pol II into productive elongation. Here, we found that PAF1 occupies transcriptional enhancers and restrains hyperactivation of a subset of these enhancers. Enhancer activation as the result of PAF1 loss releases Pol II from paused promoters of nearby PAF1 target genes. Knockout of PAF1-regulated enhancers attenuates the release of paused Pol II on PAF1 target genes without major interference in the establishment of pausing at their cognate promoters. Thus, a subset of enhancers can primarily modulate gene expression by controlling the release of paused Pol II in a PAF1-dependent manner.


Genes & Development | 2017

Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation

Christie C. Sze; Kaixiang Cao; Clayton K. Collings; Stacy A. Marshall; Emily J. Rendleman; Patrick A. Ozark; Fei Xavier Chen; Marc A. Morgan; Lu Wang; Ali Shilatifard

Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1AΔSET); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1AΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1AΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency.


Genes & Development | 2017

A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation

Marc A. Morgan; Ryan Rickels; Clayton K. Collings; Xiaolin He; Kaixiang Cao; Hans Martin Herz; Kira A. Cozzolino; Nebiyu A. Abshiru; Stacy A. Marshall; Emily J. Rendleman; Christie C. Sze; Andrea Piunti; Neil L. Kelleher; Jeffrey N. Savas; Ali Shilatifard

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Nature Medicine | 2018

Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy

Lu Wang; Zibo Zhao; Patrick A. Ozark; Damiano Fantini; Stacy A. Marshall; Emily J. Rendleman; Kira A. Cozzolino; Nundia Louis; Xingyao He; Marc A. Morgan; Yoh Hei Takahashi; Clayton K. Collings; Edwin R. Smith; Panagiotis Ntziachristos; Jeffrey N. Savas; Lihua Zou; Rintaro Hashizume; Joshua J. Meeks; Ali Shilatifard

The lysine methyltransferase KMT2C (also known as MLL3), a subunit of the COMPASS complex, implements monomethylation of Lys4 on histone H3 (H3K4) at gene enhancers. KMT2C (hereafter referred to as MLL3) frequently incurs point mutations across a range of human tumor types, but precisely how these lesions alter MLL3 function and contribute to oncogenesis is unclear. Here we report a cancer mutational hotspot in MLL3 within the region encoding its plant homeodomain (PHD) repeats and demonstrate that this domain mediates association of MLL3 with the histone H2A deubiquitinase and tumor suppressor BAP1. Cancer-associated mutations in the sequence encoding the MLL3 PHD repeats disrupt the interaction between MLL3 and BAP1 and correlate with poor patient survival. Cancer cells that had PHD-associated MLL3 mutations or lacked BAP1 showed reduced recruitment of MLL3 and the H3K27 demethylase KDM6A (also known as UTX) to gene enhancers. As a result, inhibition of the H3K27 methyltransferase activity of the Polycomb repressive complex 2 (PRC2) in tumor cells harboring BAP1 or MLL3 mutations restored normal gene expression patterns and impaired cell proliferation in vivo. This study provides mechanistic insight into the oncogenic effects of PHD-associated mutations in MLL3 and suggests that restoration of a balanced state of Polycomb–COMPASS activity may have therapeutic efficacy in tumors that bear mutations in the genes encoding these epigenetic factors.Interactions between the MLL3 histone methyltransferase and the BAP1–UTX complex set the level of histone H3K27 methylation and suggest a new therapy for MLL3-mutant cancer.


Science Advances | 2018

An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells

Kaixiang Cao; Clayton K. Collings; Marc A. Morgan; Stacy A. Marshall; Emily J. Rendleman; Patrick A. Ozark; Edwin R. Smith; Ali Shilatifard

The counterbalance between coactivator and co-repressor complexes at enhancers instructs stem cell pluripotency transition. Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations.


Cell | 2018

Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy

Kaiwei Liang; Edwin R. Smith; Yuki Aoi; Kristen L. Stoltz; Hiroaki Katagi; Ashley R. Woodfin; Emily J. Rendleman; Stacy A. Marshall; David C. Murray; Lu Wang; Patrick A. Ozark; Rama K. Mishra; Rintaro Hashizume; Gary E. Schiltz; Ali Shilatifard

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Clinical Cancer Research | 2018

USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional program in T cell leukemia

Qi Jin; Carlos Alberto Martinez; Kelly Marie Arcipowski; Yixing Zhu; Blanca T. Gutiérrez-Díaz; Kenneth K. Wang; Megan R. Johnson; Andrew Volk; Feng Wang; Jian Wu; Charles Grove; Hui Wang; Ivan Sokirniy; Paul M. Thomas; Young Ah Goo; Nebiyu A. Abshiru; Nobuko Hijiya; Sofie Peirs; Niels Vandamme; Geert Berx; Steven Goossens; Stacy A. Marshall; Emily J. Rendleman; Yoh Hei Takahashi; Lu Wang; Radhika Rawat; Elizabeth Bartom; Clayton K. Collings; Pieter Van Vlierberghe; Jean-Pierre Bourquin

Collaboration


Dive into the Emily J. Rendleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaixiang Cao

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Lu Wang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge