Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily K. Anderson-Baucum is active.

Publication


Featured researches published by Emily K. Anderson-Baucum.


Diabetes | 2014

Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution

Jeb S. Orr; Arion Kennedy; Emily K. Anderson-Baucum; Corey D. Webb; Steve C. Fordahl; Keith M. Erikson; Yaofang Zhang; Anders Etzerodt; Søren K. Moestrup; Alyssa H. Hasty

Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFehi, and the remaining ATMs are referred to as MFelo. In lean mice, ~25% of the ATMs are MFehi; this percentage decreases in obesity owing to the recruitment of MFelo macrophages. Similar to MFelo cells, MFehi ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFehi ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFehi iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFehi ATM phenotype and their reduced capacity to handle iron.


Journal of Leukocyte Biology | 2015

CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue

W. Reid Bolus; Dario A. Gutierrez; Arion Kennedy; Emily K. Anderson-Baucum; Alyssa H. Hasty

Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL‐4/IL‐13‐dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2−/− AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2−/− mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2−/− bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2−/− mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2−/− mice, an increased eosinophil number positively correlated with M2‐like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.


Diabetes | 2016

SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity.

Xin Tong; Tatsuyoshi Kono; Emily K. Anderson-Baucum; Wataru Yamamoto; Patrick Gilon; Djamel Lebeche; Richard N. Day; Gary E. Shull; Carmella Evans-Molina

The sarcoendoplasmic reticulum (ER) Ca2+ ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca2+ stores. Whereas β-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in β-cell function, insulin secretion, glucose-induced cytosolic Ca2+ mobilization, and the onset of steady-state glucose-induced Ca2+ oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced β-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca2+ storage and rescued tunicamycin-induced β-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca2+ homeostasis in the β-cell compensatory response to diet-induced obesity.


Diabetologia | 2017

MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells

Emily K. Sims; Alexander J. Lakhter; Emily K. Anderson-Baucum; Tatsuyoshi Kono; Xin Tong; Carmella Evans-Molina

Aims/hypothesisThe role of beta cell microRNA (miR)-21 in the pathophysiology of type 1 diabetes has been controversial. Here, we sought to define the context of beta cell miR-21 upregulation in type 1 diabetes and the phenotype of beta cell miR-21 overexpression through target identification.MethodsIslets were isolated from NOD mice and mice treated with multiple low doses of streptozotocin, as a mouse model of diabetes. INS-1 832/13 beta cells and human islets were treated with IL-1β, IFN-γ and TNF-α to mimic the milieu of early type 1 diabetes. Cells and islets were transfected with miR-21 mimics or inhibitors. Luciferase assays and polyribosomal profiling (PRP) were performed to define miR-21–target interactions.ResultsBeta cell miR-21 was increased in in vivo models of type 1 diabetes and cytokine-treated cells/islets. miR-21 overexpression decreased cell count and viability, and increased cleaved caspase 3 levels, suggesting increased cell death. In silico prediction tools identified the antiapoptotic mRNA BCL2 as a conserved miR-21 target. Consistent with this, miR-21 overexpression decreased BCL2 transcript and B cell lymphoma 2 (BCL2) protein production, while miR-21 inhibition increased BCL2 protein levels and reduced cleaved caspase 3 levels after cytokine treatment. miR-21-mediated cell death was abrogated in 828/33 cells, which constitutively overexpress Bcl2. Luciferase assays suggested a direct interaction between miR-21 and the BCL2 3′ untranslated region. With miR-21 overexpression, PRP revealed a shift of the Bcl2 message towards monosome-associated fractions, indicating inhibition of Bcl2 translation. Finally, overexpression in dispersed human islets confirmed a reduction in BCL2 transcripts and increased cleaved caspase 3 production.Conclusions/interpretationIn contrast to the pro-survival role reported in other systems, our results demonstrate that miR-21 increases beta cell death via BCL2 transcript degradation and inhibition of BCL2 translation.


Translational Research | 2017

Smoking and the risk of type 2 diabetes

Judith Maddatu; Emily K. Anderson-Baucum; Carmella Evans-Molina

&NA; Despite accumulating evidence demonstrating strong epidemiologic and mechanistic associations between cigarette smoking, hyperglycemia, and the development of type 2 diabetes, tobacco abuse has not been uniformly recognized as a modifiable risk factor in diabetes prevention or screening strategies. In this review, we highlight population‐based studies that have linked cigarette smoking with an increased risk of type 2 diabetes and summarize clinical and preclinical studies offering insight into mechanisms through which cigarette smoking and nicotine exposure impact body composition, insulin sensitivity, and pancreatic &bgr; cell function. Key questions for future studies are identified and strategies for smoking cessation as a means to decrease diabetes risk are discussed.


Adipocyte | 2014

Regulation of S100B in white adipose tissue by obesity in mice.

Laura B. Buckman; Emily K. Anderson-Baucum; Alyssa H. Hasty; Kate L. J. Ellacott

S100B is a calcium binding protein found in adipose tissue; however, relatively little is known about the physiologic regulation or distribution of the protein within this organ. We examined plasma S100B concentration and white adipose tissue (WAT) s100b mRNA levels in lean and diet-induced obese (DIO) mice. Plasma S100B levels were increased by obesity. In WAT, s100b gene expression was also significantly increased by obesity and this increase was reversed following weight-loss. s100b gene expression was detected in both the adipocyte-enriched and stromal-vascular fractions of WAT; however, the increase in s100b gene expression in obese animals was only detected in the adipocyte-enriched fraction. Our results support published in vitro data indicating that WAT S100B may contribute to obesity-associated inflammation.


Physiological Reports | 2016

CC‐chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice

Jeb S. Orr; Arion Kennedy; Andrea A. Hill; Emily K. Anderson-Baucum; Merla J. Hubler; Alyssa H. Hasty

The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT. However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T‐cell (ATT) accumulation. CCR7−/− and littermate wild‐type (WT) mice were placed on low‐fat diet (LFD) or high‐fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD‐induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7−/− mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD‐fed CCR7−/− mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8+ ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1β, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7−/− and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7−/− but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8+ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet‐induced obesity.


Adipocyte | 2014

A possible secondary immune response in adipose tissue during weight cycling: The ups and downs of yo-yo dieting

Emily K. Anderson-Baucum; Amy S. Major; Alyssa H. Hasty

The field of immunometabolism is burgeoning, with hundreds of papers published on the topic each year. Our understanding of the contribution of immune cells to metabolic regulation has expanded from a simple idea of innate immune cells, such as macrophages, altering adipose tissue function in obesity, to an awareness of the complex role of adaptive immunity in many different organ systems. Recent findings have clearly demonstrated the presence of adaptive lymphocytes, such as T and B cells, in adipose tissue. Furthermore, these data demonstrated T-cell accumulation and limited T-cell receptor repertoire diversity in obese adipose tissue, indicating that an antigen-specific immune response may occur within this tissue. In a recently published paper, we reported that a mouse model of weight cycling resulted in increased T-cell accumulation in adipose tissue. In the current commentary, we discuss the possibility that this increase in adipose tissue T-cell number could represent a local secondary immune response to self-antigens exposed in adipose tissue during obesity. If further experimentation indicates that this hypothesis is true, these data will fortify the concept that obesity is a complex immune-mediated disease and would emphasize the importance of designing therapies to maintain weight loss.


17th European Congress of Endocrinology | 2015

Complement factor 5 deficiency leads to defective insulin receptor processing and severe systemic insulin resistance

Takuya Kikuchi; Dario A. Gutierrez; Emily K. Anderson-Baucum; W. Reid Bolus; Merla J. Hubler; Brian T. Palmisano; Owen P. McGuinness; Alyssa H. Hasty


PMC | 2017

Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation

Masayuki Hatanaka; Emily K. Anderson-Baucum; Alexander J. Lakhter; Tatsuyoshi Kono; Bernhard Maier; Sarah A. Tersey; Yukio Tanizawa; Carmella Evans-Molina; Raghavendra G. Mirmira; Emily K. Sims

Collaboration


Dive into the Emily K. Anderson-Baucum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Djamel Lebeche

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Gary E. Shull

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge