Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily K. Farran is active.

Publication


Featured researches published by Emily K. Farran.


Neuropsychologia | 2003

Divided attention, selective attention and drawing: Processing preferences in Williams syndrome are dependent on the task administered

Emily K. Farran; Christopher Jarrold; Susan E. Gathercole

The visuo-spatial abilities of individuals with Williams syndrome (WS) have consistently been shown to be generally weak. These poor visuo-spatial abilities have been ascribed to a local processing bias by some [R. Rossen, E.S. Klima, U. Bellugi, A. Bihrle, W. Jones, Interaction between language and cognition: evidence from Williams syndrome, in: J. Beitchman, N. Cohen, M. Konstantareas, R. Tannock (Eds.), Language, Learning and Behaviour disorders: Developmental, Behavioural and Clinical Perspectives, Cambridge University Press, New York, 1996, pp. 367-392] and conversely, to a global processing bias by others [Psychol. Sci. 10 (1999) 453]. In this study, two identification versions and one drawing version of the Navon hierarchical processing task, a non-verbal task, were employed to investigate this apparent contradiction. The two identification tasks were administered to 21 individuals with WS, 21 typically developing individuals, matched by non-verbal ability, and 21 adult participants matched to the WS group by mean chronological age (CA). The third, drawing task was administered to the WS group and the typically developing (TD) controls only. It was hypothesised that the WS group would show differential processing biases depending on the type of processing the task was measuring. Results from two identification versions of the Navon task measuring divided and selective attention showed that the WS group experienced equal interference from global to local as from local to global levels, and did not show an advantage of one level over another. This pattern of performance was broadly comparable to that of the control groups. The third task, a drawing version of the Navon task, revealed that individuals with WS were significantly better at drawing the local form in comparison to the global figure, whereas the typically developing control group did not show a bias towards either level. In summary, this study demonstrates that individuals with WS do not have a local or a global processing bias when asked to identify stimuli, but do show a local bias in their drawing abilities. This contrast may explain the apparently contrasting findings from previous studies.


Clinical Linguistics & Phonetics | 2007

Do Children with Williams Syndrome Really Have Good Vocabulary Knowledge? Methods for Comparing Cognitive and Linguistic Abilities in Developmental Disorders.

Jon Brock; Christopher Jarrold; Emily K. Farran; Glynis Laws; Deborah M. Riby

The comparison of cognitive and linguistic skills in individuals with developmental disorders is fraught with methodological and psychometric difficulties. In this paper, we illustrate some of these issues by comparing the receptive vocabulary knowledge and non‐verbal reasoning abilities of 41 children with Williams syndrome, a genetic disorder in which language abilities are often claimed to be relatively strong. Data from this group were compared with data from typically developing children, children with Down syndrome, and children with non‐specific learning difficulties using a number of approaches including comparison of age‐equivalent scores, matching, analysis of covariance, and regression‐based standardization. Across these analyses children with Williams syndrome consistently demonstrated relatively good receptive vocabulary knowledge, although this effect appeared strongest in the oldest children.


Neuropsychologia | 2005

Perceptual grouping ability in Williams syndrome: evidence for deviant patterns of performance

Emily K. Farran

Williams syndrome (WS) is a rare genetic disorder. At a cognitive level, this population display poor visuo-spatial cognition when compared to verbal ability. Within the visuo-spatial domain, it is now accepted that individuals with WS are able to perceive both local and global aspects of an image, albeit at a low level. The present study examines the manner in which local elements are grouped into a global whole in WS. Fifteen individuals with WS and 15 typically developing controls, matched for non-verbal ability, were presented with a matrix of local elements and asked whether these elements were perceptually grouped horizontally or vertically. The WS group was at the same level as the control group when grouping by luminance, closure, and alignment. However, their ability to group by shape, orientation and proximity was significantly poorer than controls. This unusual profile of grouping abilities in WS suggests that these individuals do not form a global percept in a typical manner.


Visual Cognition | 2004

Exploring block construction and mental imagery: Evidence of atypical orientation discrimination in Williams syndrome

Emily K. Farran; Christopher Jarrold

The visuospatial perceptual abilities of individuals with Williams syndrome (WS) were investigated in two experiments. Experiment 1 measured the ability of participants to discriminate between oblique and between nonoblique orientations. Individuals with WS showed a smaller effect of obliqueness in response time, when compared to controls matched for nonverbal mental age. Experiment 2 investigated the possibility that this deviant pattern of orientation discrimination accounts for the poor ability to perform mental rotation in WS (Farran, Jarrold, & Gathercole, 2001). A size transformation task was employed, which shares the image transformation requirements of mental rotation, but not the orientation discrimination demands. Individuals with WS performed at the same level as controls. The results suggest a deviance at the perceptual level in WS, in processing orientation, which fractionates from the ability to mentally transform images.


Developmental Neuropsychology | 2008

Mental Rotation in Williams Syndrome: An Impaired Ability

Chris Stinton; Emily K. Farran; Yannick Courbois

Typically developing young children and individuals with intellectual disabilities often perform poorly on mental rotation tasks when the stimulus they are rotating lacks a salient component. However, performance can be improved when salience is increased. The present study investigated the effect of salience on mental rotation performance by individuals with Williams syndrome. Individuals with Williams syndrome and matched controls were presented with two versions of a mental rotation task: a no salient component condition and a salient component condition. The results showed that component salience did not benefit individuals with Williams syndrome in the same manner as it did controls.


European Journal of Psychiatry | 2010

Williams Syndrome: The extent of agreement between parent and self report of psychological difficulties

Kim Freeman; Tim Williams; Emily K. Farran; Janice H. Brown

Background and Objectives: People with Williams syndrome (WS) have been reported by their carers to have problems with attention, anxiety and social relationships. People with WS have been shown to report their anxieties. This study extends our knowledge of how people with WS see themselves in terms of behaviour and social relationships. Methods: A survey using self and parent report forms of the Strengths and Difficulties Questionnaire. Results: Both parents and individuals with WS (N = 31) reported difficulties in emotional disorder and hyperactivity symptoms and strengths in prosocial behaviours such as altruism and empathy. They disagreed about peer problems. Conclusions: People with WS understand some but not all of their difficulties. In particular they fail to recognize their social difficulties which may lead them to be vulnerable to exploitation.


Brain and Cognition | 2008

Perceptual grouping and distance estimates in typical and atypical development: Comparing performance across perception, drawing and construction tasks

Emily K. Farran; Victoria Cole

Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD: Experiment 1) and in individuals with Williams syndrome (WS: Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants.


Neuropsychologia | 2007

Texture segmentation in Williams syndrome

Emily K. Farran; Kate Wilmut

Williams syndrome (WS) is a developmental disorder in which visuo-spatial cognition is poor relative to verbal ability. At the level of visuo-spatial perception, individuals with WS can perceive both the local and global aspects of an image. However, the manner in which local elements are integrated into a global whole is atypical, with relative strengths in integration by luminance, closure, and alignment compared to shape, orientation and proximity. The present study investigated the manner in which global images are segmented into local parts. Segmentation by seven gestalt principles was investigated: proximity, shape, luminance, orientation, closure, size (and alignment: Experiment 1 only). Participants were presented with uniform texture squares and asked to detect the presence of a discrepant patch (Experiment 1) or to identify the form of a discrepant patch as a capital E or H (Experiment 2). In Experiment 1, the pattern and level of performance of the WS group did not differ from that of typically developing controls, and was commensurate with the general level of non-verbal ability observed in WS. These results were replicated in Experiment 2, with the exception of segmentation by proximity, where individuals with WS demonstrated superior performance relative to the remaining segmentation types. Overall, the results suggest that, despite some atypical aspects of visuo-spatial perception in WS, the ability to segment a global form into parts is broadly typical in this population. In turn, this informs predictions of brain function in WS, particularly areas V1 and V4.


Brain and Cognition | 2005

Evidence for unusual spatial location coding in Williams syndrome: An explanation for the local bias in visuo-spatial construction tasks?☆

Emily K. Farran; Christopher Jarrold


Research in Developmental Disabilities | 2008

Strategies and Biases in Location Memory in Williams Syndrome.

Emily K. Farran

Collaboration


Dive into the Emily K. Farran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice H. Brown

London South Bank University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Wilmut

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge