Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily L. Dennis is active.

Publication


Featured researches published by Emily L. Dennis.


Biological Psychiatry | 2011

Default-Mode and Task-Positive Network Activity in Major Depressive Disorder: Implications for Adaptive and Maladaptive Rumination

J. Paul Hamilton; Daniella J. Furman; Catie Chang; Moriah E. Thomason; Emily L. Dennis; Ian H. Gotlib

BACKGROUND Major depressive disorder (MDD) has been associated reliably with ruminative responding; this kind of responding is composed of both maladaptive and adaptive components. Levels of activity in the default-mode network (DMN) relative to the task-positive network (TPN), as well as activity in structures that influence DMN and TPN functioning, may represent important neural substrates of maladaptive and adaptive rumination in MDD. METHODS We used a unique metric to estimate DMN dominance over TPN from blood oxygenation level-dependent data collected during eyes-closed rest in 17 currently depressed and 17 never-disordered adults. We calculated correlations between this metric of DMN dominance over TPN and the depressive, brooding, and reflective subscales of the Ruminative Responses Scale, correcting for associations between these measures both with one another and with severity of depression. Finally, we estimated and compared across groups right fronto-insular cortex (RFIC) response during initiations of ascent in DMN and in TPN activity. RESULTS In the MDD participants, increasing levels of DMN dominance were associated with higher levels of maladaptive, depressive rumination and lower levels of adaptive, reflective rumination. Moreover, our RFIC state-change analysis showed increased RFIC activation in the MDD participants at the onset of increases in TPN activity; conversely, healthy control participants exhibited increased RFIC response at the onset of increases in DMN activity. CONCLUSIONS These findings support a formulation in which the DMN undergirds representation of negative, self-referential information in depression, and the RFIC, when prompted by increased levels of DMN activity, initiates an adaptive engagement of the TPN.


Cognitive, Affective, & Behavioral Neuroscience | 2010

Neural correlates of rumination in depression

Rebecca E. Cooney; Jutta Joormann; Fanny Eugène; Emily L. Dennis; Ian H. Gotlib

Rumination, or recursive self-focused thinking, has important implications for understanding the development and maintenance of depressive episodes. Rumination is associated with the worsening of negative mood states, greater affective responding to negative material, and increased access to negative memories. The present study was designed to use fMRI to examine neural aspects of rumination in depressed and healthy control individuals. We used a rumination induction task to assess differences in patterns of neural activation during ruminative self-focus as compared with a concrete distraction condition and with a novel abstract distraction condition in 14 participants who were diagnosed with major depressive disorder and 14 healthy control participants. Depressed participants exhibited increased activation in the orbitofrontal cortex, subgenual anterior cingulate, and dorsolateral prefrontal cortex as compared with healthy controls during rumination versus concrete distraction. Neural activity during rumination versus abstract distraction was greater for depressed than for control participants in the amygdala, rostral anterior cingulate/medial prefrontal cortex, dorsolateral prefrontal cortex, posterior cingulate, and parahippocampus. These findings indicate that ruminative self-focus is associated with enhanced recruitment of limbic and medial and dorsolateral prefrontal regions in depression. Supplemental materials for this article may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.


NeuroImage: Clinical | 2013

Altered functional and structural brain network organization in autism

Jeffrey D. Rudie; Jesse A. Brown; Devora Beck-Pancer; Leanna M. Hernandez; Emily L. Dennis; Paul M. Thompson; Susan Y. Bookheimer; Mirella Dapretto

Structural and functional underconnectivity have been reported for multiple brain regions, functional systems, and white matter tracts in individuals with autism spectrum disorders (ASD). Although recent developments in complex network analysis have established that the brain is a modular network exhibiting small-world properties, network level organization has not been carefully examined in ASD. Here we used resting-state functional MRI (n = 42 ASD, n = 37 typically developing; TD) to show that children and adolescents with ASD display reduced short and long-range connectivity within functional systems (i.e., reduced functional integration) and stronger connectivity between functional systems (i.e., reduced functional segregation), particularly in default and higher-order visual regions. Using graph theoretical methods, we show that pairwise group differences in functional connectivity are reflected in network level reductions in modularity and clustering (local efficiency), but shorter characteristic path lengths (higher global efficiency). Structural networks, generated from diffusion tensor MRI derived fiber tracts (n = 51 ASD, n = 43 TD), displayed lower levels of white matter integrity yet higher numbers of fibers. TD and ASD individuals exhibited similar levels of correlation between raw measures of structural and functional connectivity (n = 35 ASD, n = 35 TD). However, a principal component analysis combining structural and functional network properties revealed that the balance of local and global efficiency between structural and functional networks was reduced in ASD, positively correlated with age, and inversely correlated with ASD symptom severity. Overall, our findings suggest that modeling the brain as a complex network will be highly informative in unraveling the biological basis of ASD and other neuropsychiatric disorders.


Neuropsychology Review | 2014

Functional Brain Connectivity Using fMRI in Aging and Alzheimer’s Disease

Emily L. Dennis; Paul M. Thompson

Normal aging and Alzheimer’s disease (AD) cause profound changes in the brain’s structure and function. AD in particular is accompanied by widespread cortical neuronal loss, and loss of connections between brain systems. This degeneration of neural pathways disrupts the functional coherence of brain activation. Recent innovations in brain imaging have detected characteristic disruptions in functional networks. Here we review studies examining changes in functional connectivity, measured through fMRI (functional magnetic resonance imaging), starting with healthy aging and then Alzheimer’s disease. We cover studies that employ the three primary methods to analyze functional connectivity—seed-based, ICA (independent components analysis), and graph theory. At the end we include a brief discussion of other methodologies, such as EEG (electroencephalography), MEG (magnetoencephalography), and PET (positron emission tomography). We also describe multi-modal studies that combine rsfMRI (resting state fMRI) with PET imaging, as well as studies examining the effects of medications. Overall, connectivity and network integrity appear to decrease in healthy aging, but this decrease is accelerated in AD, with specific systems hit hardest, such as the default mode network (DMN). Functional connectivity is a relatively new topic of research, but it holds great promise in revealing how brain network dynamics change across the lifespan and in disease.


NeuroImage | 2013

Development of brain structural connectivity between ages 12 and 30: a 4-tesla diffusion imaging study in 439 adolescents and adults

Emily L. Dennis; Neda Jahanshad; Katie L. McMahon; Greig I. de Zubicaray; Nicholas G. Martin; Ian B. Hickie; Arthur W. Toga; Margaret J. Wright; Paul M. Thompson

Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brains anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participants co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.


NeuroImage | 2011

Resting-state fMRI can reliably map neural networks in children

Moriah E. Thomason; Emily L. Dennis; Anand A. Joshi; Ivo D. Dinov; Catie Chang; Melissa L. Henry; Rebecca F. Johnson; Paul M. Thompson; Arthur W. Toga; Gary H. Glover; John D. Van Horn; Ian H. Gotlib

Resting-state MRI (rs-fMRI) is a powerful procedure for studying whole-brain neural connectivity. In this study we provide the first empirical evidence of the longitudinal reliability of rs-fMRI in children. We compared rest-retest measurements across spatial, temporal and frequency domains for each of six cognitive and sensorimotor intrinsic connectivity networks (ICNs) both within and between scan sessions. Using KendallsW, concordance of spatial maps ranged from .60 to .86 across networks, for various derived measures. The Pearson correlation coefficient for temporal coherence between networks across all Time 1-Time 2 (T1/T2) z-converted measures was .66 (p<.001). There were no differences between T1/T2 measurements in low-frequency power of the ICNs. For the visual network, within-session T1 correlated with the T2 low-frequency power, across participants. These measures from resting-state data in children were consistent across multiple domains (spatial, temporal, and frequency). Resting-state connectivity is therefore a reliable method for assessing large-scale brain networks in children.


NeuroImage | 2017

ENIGMA and the Individual: Predicting Factors that Affect the Brain in 35 Countries Worldwide

Paul M. Thompson; Ole A. Andreassen; Alejandro Arias-Vasquez; Carrie E. Bearden; Premika S.W. Boedhoe; Rachel M. Brouwer; Randy L. Buckner; Jan K. Buitelaar; Kazima Bulayeva; Dara M. Cannon; Ronald A. Cohen; Patricia J. Conrod; Anders M. Dale; Ian J. Deary; Emily L. Dennis; Marcel A. de Reus; Sylvane Desrivières; Danai Dima; Gary Donohoe; Simon E. Fisher; Jean-Paul Fouche; Clyde Francks; Sophia Frangou; Barbara Franke; Habib Ganjgahi; Hugh Garavan; David C. Glahn; Hans Joergen Grabe; Tulio Guadalupe; Boris A. Gutman

In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) – a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date – of schizophrenia and major depression – ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMAs genomic screens – now numbering over 30,000 MRI scans – have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants – and genetic variants in general – may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures – from tens of thousands of people – that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMAs efforts so far.


International Journal of Developmental Neuroscience | 2013

Mapping connectivity in the developing brain.

Emily L. Dennis; Paul M. Thompson

Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization – or asymmetry – and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.


The Journal of Neuroscience | 2015

Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity

Emily L. Dennis; Monica U. Ellis; Sarah Marion; Yan Jin; Lisa M. Moran; X Alexander Olsen; Claudia Kernan; X Talin Babikian; X Richard Mink; Christopher Babbitt; Jeffrey Johnson; Christopher C. Giza; Paul M. Thompson; Robert F. Asarnow

Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1–5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy—a common sign of impaired WM—and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this variance, as diffusion weighted imaging is sensitive to the white matter disruption that is common after injury. The corpus callosum (CC) is one of the most commonly reported areas of disruption. In this multimodal study, we discovered a divergence within our pediatric moderate-to-severe TBI sample 1–5 months postinjury. A subset of the TBI sample showed significant impairment in CC function, which is supported by additional results showing deficits in CC structural integrity. This subset also had poorer neurocognitive functioning. Our research sheds light on postinjury heterogeneity.


NeuroImage: Clinical | 2015

White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

Emily L. Dennis; Yan Jin; Julio E. Villalon-Reina; Liang Zhan; Claudia Kernan; Talin Babikian; Richard Mink; Christopher Babbitt; Jeffrey Johnson; Christopher C. Giza; Paul M. Thompson; Robert F. Asarnow

Traumatic brain injury (TBI) is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging) are uniquely sensitive to the white matter (WM) damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy) characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction) method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases). We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD). In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

Collaboration


Dive into the Emily L. Dennis's collaboration.

Top Co-Authors

Avatar

Paul M. Thompson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Neda Jahanshad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Talin Babikian

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Johnson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Richard Mink

University of California

View shared research outputs
Top Co-Authors

Avatar

Arthur W. Toga

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge