Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily M. Mace is active.

Publication


Featured researches published by Emily M. Mace.


Blood | 2014

GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity.

Michael A. Spinner; Lauren A. Sanchez; Amy P. Hsu; Pamela A. Shaw; Christa S. Zerbe; Katherine R. Calvo; Diane C. Arthur; Wenjuan Gu; Christine M. Gould; Carmen C. Brewer; Edward W. Cowen; Alexandra F. Freeman; Kenneth N. Olivier; Gulbu Uzel; Adrian M. Zelazny; Janine Daub; Christine Spalding; Reginald J. Claypool; Neelam Giri; Blanche P. Alter; Emily M. Mace; Jordan S. Orange; Jennifer Cuellar-Rodriguez; Dennis D. Hickstein; Steven M. Holland

Haploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations. We identified a broad spectrum of disease: hematologic (MDS 84%, AML 14%, chronic myelomonocytic leukemia 8%), infectious (severe viral 70%, disseminated mycobacterial 53%, and invasive fungal infections 16%), pulmonary (diffusion 79% and ventilatory defects 63%, pulmonary alveolar proteinosis 18%, pulmonary arterial hypertension 9%), dermatologic (warts 53%, panniculitis 30%), neoplastic (human papillomavirus+ tumors 35%, Epstein-Barr virus+ tumors 4%), vascular/lymphatic (venous thrombosis 25%, lymphedema 11%), sensorineural hearing loss 76%, miscarriage 33%, and hypothyroidism 14%. Viral infections and lymphedema were more common in individuals with null mutations (P = .038 and P = .006, respectively). Monocytopenia, B, NK, and CD4 lymphocytopenia correlated with the presence of disease (P < .001). GATA2 deficiency unites susceptibility to MDS/AML, immunodeficiency, pulmonary disease, and vascular/lymphatic dysfunction. Early genetic diagnosis is critical to direct clinical management, preventive care, and family screening.


PLOS Biology | 2011

Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse

Gregory D. Rak; Emily M. Mace; Pinaki P. Banerjee; Tatyana Svitkina; Jordan S. Orange

Super-resolution imaging provides a new look at how the lytic granules in natural killer cells penetrate the filamentous actin network of the immunological synapse.


Blood | 2013

Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset.

Emily M. Mace; Amy P. Hsu; Linda Monaco-Shawver; George Makedonas; Joshua B. Rosen; Lesia K. Dropulic; Jeffrey I. Cohen; Eugene P. Frenkel; John C. Bagwell; John L. Sullivan; Christine A. Biron; Christine Spalding; Christa S. Zerbe; Gulbu Uzel; Steven M. Holland; Jordan S. Orange

Mutations in the transcription factor GATA2 underlie the syndrome of monocytopenia and B- and natural killer (NK)-cell lymphopenia associated with opportunistic infections and cancers. In addition, patients have recurrent and severe viral infections. NK cells play a critical role in mediating antiviral immunity. Human NK cells are thought to mature in a linear fashion, with the CD56(bright) stage preceding terminal maturation to the CD56(dim) stage, considered the most enabled for cytotoxicity. Here we report an NK cell functional defect in GATA2-deficient patients and extend this genetic lesion to what is considered to be the original NK cell-deficient patient. In most cases, GATA2 deficiency is accompanied by a severe reduction in peripheral blood NK cells and marked functional impairment. The NK cells detected in peripheral blood of some GATA2-deficient patients are exclusively of the CD56(dim) subset, which is recapitulated on in vitro NK cell differentiation. In vivo, interferon α treatment increased NK cell number and partially restored function but did not correct the paucity of CD56(bright) cells. Thus, GATA2 is required for the maturation of human NK cells and the maintenance of the CD56(bright) pool in the periphery. Defects in GATA2 are a novel cause of profound NK cell dysfunction.


Immunology and Cell Biology | 2014

Cell biological steps and checkpoints in accessing NK cell cytotoxicity

Emily M. Mace; Prachi Dongre; Hsiang-Ting Hsu; Papiya Sinha; Ashley Mentlik James; Shaina S. Mann; Lisa R. Forbes; Levi B. Watkin; Jordan S. Orange

Natural killer (NK) cell‐mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell‐mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.


Journal of Clinical Investigation | 2011

IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

Jordan S. Orange; Sumita Roy-Ghanta; Emily M. Mace; Saumya Y. Maru; Gregory D. Rak; Keri B. Sanborn; Anders Fasth; Rushani Saltzman; Allison Paisley; Linda Monaco-Shawver; Pinaki P. Banerjee; Rahul Pandey

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lytic Immune Synapse Function Requires Filamentous Actin Deconstruction by Coronin 1A

Emily M. Mace; Jordan S. Orange

Significance Natural killer (NK) cells are cytolytic effector cells of the innate immune system. They are critical for the control of viral infection and malignancy, and patients with impaired NK cell function have recurrent and often fatal viral infection and malignancy. NK cell cytotoxic function is exerted by secretion of specialized lytic granules. Here, we show that deconstruction of synaptic cortical filamentous (F)-actin by Coronin 1A (Coro1A) is required for NK cell cytotoxicity through the remodeling of F-actin to enable lytic granule secretion. We define this requirement for remodeling using superresolution nanoscopy and Coro1A-deficient NK cells. In addition, we use NK cells from a patient with a rare Coro1A mutation, thus illustrating a critical link between Coro1A function and human health. Lytic immune effector function depends upon directed secretion of cytolytic granules at the immunological synapse (IS) and requires dynamic rearrangement of filamentous (F)-actin. Coronin 1A (Coro1A) is the hematopoietic-specific member of the Coronin family of actin regulators that promote F-actin disassembly. Here, we show that Coro1A is required for natural killer (NK) cell cytotoxic function in two human NK cell lines and ex vivo cells from a Coro1A-deficient patient. Using superresolution nanoscopy to probe the IS, we demonstrate that Coro1A promotes the deconstruction of F-actin density that facilitates effective delivery of lytic granules to the IS. Thus, we show, for the first time to our knowledge, a critical role for F-actin deconstruction in cytotoxic function and immunological secretion and identify Coro1A as its mediator.


Nature Genetics | 2015

COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis

Levi B. Watkin; Birthe Jessen; Wojciech Wiszniewski; Timothy J. Vece; Max Jan; Youbao Sha; Maike Thamsen; Regie Lyn P. Santos-Cortez; Kwanghyuk Lee; Tomasz Gambin; Lisa R. Forbes; Christopher S. Law; Asbjørg Stray-Pedersen; Mickie H. Cheng; Emily M. Mace; Mark S. Anderson; Dongfang Liu; Ling Fung Tang; Sarah K. Nicholas; Karen Nahmod; George Makedonas; Debra L. Canter; Pui-Yan Kwok; John Hicks; Kirk D. Jones; Samantha Penney; Shalini N. Jhangiani; Michael D. Rosenblum; Sharon D. Dell; Michael Waterfield

Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4+ T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.


Blood | 2010

Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells.

Emily M. Mace; Jinyi Zhang; Katherine A. Siminovitch; Fumio Takei

The leukocyte integrin LFA-1 is critical for natural killer (NK) cell cytotoxicity as it mediates NK-cell adhesion to target cells and generates activating signals that lead to polarization of the actin cytoskeleton. However, the LFA-1-mediated signaling pathway is not fully understood. Here, we examined the subcellular localization of actin-associated proteins in wild-type, talin-deficient, and Wiskott-Aldrich Syndrome protein (WASP)-deficient NK cells bound to beads coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). In addition, we carried out coimmunoprecipitation analyses and also used a pharmacologic reagent to reduce the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)). The results revealed the following signaling pathways. Upon ICAM-1 binding to LFA-1, talin redistributes to the site of LFA-1 ligation and initiates 2 signaling pathways. First, talin recruits the actin nucleating protein complex Arp2/3 via constitutive association of vinculin with talin and Arp2/3. Second, talin also associates with type I phosphatidylinositol 4-phosphate 5-kinase (PIPKI) and binding of LFA-1 to ICAM-1 results in localized increase in PIP(2). This increase in PIP(2) recruits WASP to the site of LFA-1 ligation where WASP promotes Arp2/3-mediated actin polymerization. These processes are critical for the initiation of NK cell-mediated cytotoxicity.


The Journal of Allergy and Clinical Immunology | 2017

Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders

Asbjørg Stray-Pedersen; Hanne Sørmo Sorte; Pubudu Saneth Samarakoon; Tomasz Gambin; Ivan K. Chinn; Zeynep Coban Akdemir; Hans Christian Erichsen; Lisa R. Forbes; Shen Gu; Bo Yuan; Shalini N. Jhangiani; Donna M. Muzny; Olaug K. Rødningen; Ying Sheng; Sarah K. Nicholas; Lenora M. Noroski; Filiz O. Seeborg; Carla M. Davis; Debra L. Canter; Emily M. Mace; Timothy J. Vece; Carl E. Allen; Harshal Abhyankar; Philip M. Boone; Christine R. Beck; Wojciech Wiszniewski; Børre Fevang; Pål Aukrust; Geir E. Tjønnfjord; Tobias Gedde-Dahl

Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective: We sought to investigate the ability of whole‐exome screening methods to detect disease‐causing variants in patients with PIDDs. Methods: Patients with PIDDs from 278 families from 22 countries were investigated by using whole‐exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome‐tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. Results: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD‐causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion: This high‐throughput genomic approach enabled detection of disease‐related variants in unexpected genes; permitted detection of low‐grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.


Journal of Immunology | 2009

A Dual Role for Talin in NK Cell Cytotoxicity: Activation of LFA-1-Mediated Cell Adhesion and Polarization of NK Cells

Emily M. Mace; Susan J. Monkley; David R. Critchley; Fumio Takei

LFA-1 is critical for NK cell cytotoxicity because it mediates adhesion of NK cells to target cells. Talin is thought to associate with the cytoplasmic tail of LFA-1 and activates its ligand-binding function. In this study, we report that talin is also required for LFA-1-mediated outside-in signaling leading to NK cell polarization. NK cells generated from talin1-deficient murine embryonic stem cells are defective in LFA-1-mediated adhesion. Although exogenously added manganese activates LFA-1 on talin-deficient NK cells and induces conjugate formation with target cells, their LFA-1-dependent cytotoxicity is impaired. Binding of ICAM-1-coated beads to wild-type NK cells induces reorganization of the actin cytoskeleton and coligation of the activating receptor NKG2D induces polarization of cytotoxic granules, whereas talin1-deficient NK cells fail to polarize with or without NKG2D coligation. Thus, talin1 plays a dual role in NK cell cytotoxicity, first by activation of LFA-1-mediated adhesion and then via LFA-1-induced NK cell polarization.

Collaboration


Dive into the Emily M. Mace's collaboration.

Top Co-Authors

Avatar

Jordan S. Orange

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lisa R. Forbes

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Holland

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivan K. Chinn

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra F. Freeman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah K. Nicholas

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

George Makedonas

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge