Emily McFall
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily McFall.
Human Molecular Genetics | 2017
Marc-Olivier Deguise; Yves De Repentigny; Emily McFall; Nicole Auclair; Subash Sad; Rashmi Kothary
Abstract Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis.
Human Molecular Genetics | 2016
Mehdi Eshraghi; Emily McFall; Sabrina Gibeault; Rashmi Kothary
Abstract Spinal muscular atrophy (SMA) is caused by mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene in humans. Modifiers of the SMA symptoms have been identified and genetic background has a substantial effect in the phenotype and survival of the severe mouse model of SMA. Previously, we generated the less severe Smn2B/- mice on a mixed genetic background. To assess the phenotype of Smn deficiency on a pure genetic background, we produced Smn2B/2B congenic mice on either the C57BL/6 (BL6) or FVB strain background and characterized them at the 6th generation by breeding to Smn+/- mice. Smn2B/- mice from these crosses were evaluated for growth, survival, muscle atrophy, motor neuron loss, motor behaviour, and neuromuscular junction pathology. FVB Smn2B/- mice had a shorter life span than BL6 Smn2B/- mice (median of 19 days vs. 25 days). Similarly, all other defects assessed occurred at earlier stages in FVB Smn2B/-mice when compared to BL6 Smn2B/-mice. However, there were no differences in Smn protein levels in the spinal cords of these mice. Interestingly, levels of Plastin 3, a putative modifier of SMA, were significantly induced in spinal cords of BL6 Smn2B/- mice but not of FVB Smn2B/-mice. Our studies demonstrate that the phenotype in Smn2B/-mice is more severe in the FVB background than in the BL6 background, which could potentially be explained by the differential induction of genetic modifiers.
Journal of Immunology | 2013
Emily McFall; Megan M. Tu; Nuha Al-Khattabi; Lee-Hwa Tai; Aaron S. St.-Laurent; Velina Tzankova; Clayton W. Hall; Simon Bélanger; Angela D. Troke; Andrew Wight; Ahmad Bakur Mahmoud; Haggag S. Zein; Mir Munir A. Rahim; James R. Carlyle; Andrew P. Makrigiannis
Murine Ly49 receptors, which are expressed mainly on NK and NKT cells, interact with MHC class I (MHC-I) molecules with varying specificity. Differing reports of Ly49/MHC binding affinities may be affected by multiple factors, including cis versus trans competition and species origin of the MHC-I L chain (β2-microglobulin). To determine the contribution of each of these factors, Ly49G, Ly49I, Ly49O, Ly49V, and Ly49Q receptors from the 129 mouse strain were expressed individually on human 293T cells or the mouse cell lines MHC-I–deficient C1498, H-2b–expressing MC57G, and H-2k–expressing L929. The capacity to bind to H-2Db– and H-2Kb–soluble MHC-I tetramers containing either human or murine β2-microglobulin L chains was tested for all five Ly49 receptors in all four cell lines. We found that most of these five inhibitory Ly49 receptors show binding for one or both self–MHC-I molecules in soluble tetramer binding assays when three conditions are fulfilled: 1) lack of competing cis interactions, 2) tetramer L chain is of mouse origin, and 3) Ly49 is expressed in mouse and not human cell lines. Furthermore, Ly49Q, the single known MHC-I receptor on plasmacytoid dendritic cells, was shown to bind H-2Db in addition to H-2Kb when the above conditions were met, suggesting that Ly49Q functions as a pan–MHC-Ia receptor on plasmacytoid dendritic cells. In this study, we have optimized the parameters for soluble tetramer binding analyses to enhance future Ly49 ligand identification and to better evaluate specific contributions by different Ly49/MHC-I pairs to NK cell education and function.
Biochemistry and Cell Biology | 2013
Benoit B. Goulet; Emily McFall; Carmen M. Wong; Rashmi Kothary; Robin J. Parks
Spinal muscular atrophy (SMA) is the most common inherited neurodegenerative disease that leads to infant mortality. It is caused by mutations in the survival motor neuron (SMN) protein resulting in death of alpha motor neurons. Increasing evidence suggests that several other tissues are also affected in SMA, including skeletal and cardiac muscle, liver, and pancreas, indicating that systemic delivery of therapeutics may be necessary for true disease correction. Due to the natural biodistribution of therapeutics, a level of SMN several-fold above physiological levels can be achieved in some tissues. In this study, we address whether supraphysiological levels of SMN adversely affects cell function. Infection of a variety of cell types with an adenovirus (Ad) vector encoding SMN leads to very high expression, but the resulting protein correctly localizes within the cell, and associates with normal cellular partners. Although SMN affects transcription of certain target genes and can alter the splicing pattern of others, we did not observe any difference in select target gene splicing or expression in cells overexpressing SMN. However, normal human fibroblasts treated with Ad-SMN showed a slight reduction in growth rate, suggesting that certain cell types may be differently impacted by high levels of SMN.
Scientific Reports | 2016
Marc-Olivier Deguise; Justin G. Boyer; Emily McFall; Armin Yazdani; Yves De Repentigny; Rashmi Kothary
Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn2B/− mice but not in the more severe Smn−/−; SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn2B/− muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn2B/− and Smn−/−; SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels.
Virology | 2014
Emily McFall; Lyndsay M. Murray; John A. Lunde; Bernard J. Jasmin; Rashmi Kothary; Robin J. Parks
We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.
EBioMedicine | 2018
Lisa Marie Walter; Marc Olivier Deguise; Katharina E. Meijboom; Corinne Betts; Nina Ahlskog; Tirsa Westering; Gareth Hazell; Emily McFall; Anna Kordala; Suzan M. Hammond; Frank Abendroth; Lyndsay M. Murray; Hannah K. Shorrock; Domenick A. Prosdocimo; Saptarsi M. Haldar; Mukesh K. Jain; Thomas H. Gillingwater; Peter Claus; Rashmi Kothary; Matthew J.A. Wood; Melissa Bowerman
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.
Scientific Reports | 2017
Leslie A. Nash; Emily McFall; Amanda M. Perozzo; Maddison Turner; Kathy L. Poulin; Yves De Repentigny; Joseph K. Burns; Hugh J. McMillan; Jodi Warman Chardon; Dylan Burger; Rashmi Kothary; Robin J. Parks
Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein. We observed enhanced quantities of exosomes in the medium from SMN-depleted cells, and in serum from a mouse model of SMA and a patient with Type 3 SMA, suggesting that SMN-depletion causes a deregulation of exosome release or uptake. The quantity of SMN protein contained in the serum-derived exosomes correlated with the genotype of the animal, with progressively less protein in carrier and affected animals compared to wildtype mice. SMN protein was easily detectable in exosomes isolated from human serum, with a reduction in the amount of SMN protein in exosomes from a patient with Type 3 SMA compared to a normal control. Our results suggest that exosome-derived SMN protein may serve as an effective biomarker for SMA.
Human Molecular Genetics | 2017
Ryan W. O’Meara; Sarah E. Cummings; Yves De Repentigny; Emily McFall; John-Paul Michalski; Marc-Olivier Deguise; Sabrina Gibeault; Rashmi Kothary
The childhood neurodegenerative disease spinal muscular atrophy (SMA) is caused by loss-of-function mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene resulting in insufficient levels of survival motor neuron (SMN) protein. Classically considered a motor neuron disease, increasing evidence now supports SMA as a multi-system disorder with phenotypes discovered in cortical neuron, astrocyte, and Schwann cell function within the nervous system. In this study, we sought to determine whether Smn was critical for oligodendrocyte (OL) development and central nervous system myelination. A mouse model of severe SMA was used to assess OL growth, migration, differentiation and myelination. All aspects of OL development and function studied were unaffected by Smn depletion. The tremendous impact of Smn depletion on a wide variety of other cell types renders the OL response unique. Further investigation of the OLs derived from SMA models may reveal disease modifiers or a compensatory mechanism allowing these cells to flourish despite the reduced levels of this multifunctional protein.
Neuromuscular Disorders | 2018
Marc-Olivier Deguise; Ariane Beauvais; A. Tiernay; B. Paul; Emily McFall; Y. De Repentigny; Rashmi Kothary