Emily R. Stern
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily R. Stern.
The Neuroscientist | 2007
Stephan F. Taylor; Emily R. Stern; William J. Gehring
Complex behavior requires a flexible system that maintains task performance in the context of specific goals, evaluating behavioral progress, adjusting behavior as needed, and adapting to changing contingencies. Generically referred to as performance monitoring, a key component concerns the identification and correction of differences between an intended and an executed response (i.e., an error). Brain mapping experiments have now identified the temporal and spatial components of a putative error-processing system in the large-scale networks of the human brain. Most of this work has focused on the medial frontal cortex and an associated electrophysiological component known as the error-related negativity (or error negativity). Although the precise role, or roles, of this region still remain unknown, investigations of error processing have identified a cluster of modules in the medial frontal cortex involved in monitoring/maintaining ongoing behavior and motivating task sets. Other regions include bilateral anterior insula/inferior operculum and lateral prefrontal cortex. Recent work has begun to uncover how individual differences might affect the modules recruited for a task, in addition to the identification of associations between pathological states and aberrant error signals, leading to insights about possible mechanisms of neuropsychiatric illness. NEUROSCIENTIST 13(2):160—172, 2007.
Biological Psychiatry | 2010
Kate D. Fitzgerald; Emily R. Stern; Mike Angstadt; Karen C. Nicholson-Muth; McKenzie R. Maynor; Robert C. Welsh; Gregory L. Hanna; Stephan F. Taylor
BACKGROUND Exaggerated concern for correct performance has been linked to hyperactivity of the medial frontal cortex (MFC) in adult obsessive-compulsive disorder (OCD), but the role of the MFC during the early course of illness remains poorly understood. We tested whether hyperactive MFC-based performance monitoring function relates to altered MFC connectivity within task control and default mode networks in pediatric patients. METHODS Eighteen pairs of OCD and matched healthy youth underwent functional magnetic resonance imaging during performance monitoring and at rest. Task-related hyperactivations in the posterior and ventral MFC were used as seeds for connectivity analyses during task and resting state. RESULTS In posterior MFC, patients showed greater activation of dorsal anterior cingulate cortex (dACC) than control subjects, with greater activation predicting worse performance. In ventral MFC, control subjects exhibited deactivation, whereas patients activated this region. Compared with control subjects, patients showed increased dACC-ventral MFC connectivity during task and decreased dACC-right anterior operculum and ventral MFC-posterior cingulate connectivity during rest. CONCLUSIONS Excessive activation and increased interactions of posterior and ventral MFC during performance monitoring may combine with reduced resting state connectivity of these regions within networks for task control and default mode to reflect early markers of OCD. Alteration of reciprocal interactions between these networks could potentiate the intrusion of ventral MFC-based affectively laden, self-referential thoughts, while disrupting posterior MFC-based performance-monitoring function in young patients.
Journal of the American Academy of Child and Adolescent Psychiatry | 2011
Kate D. Fitzgerald; Robert C. Welsh; Emily R. Stern; Mike Angstadt; Gregory L. Hanna; James L. Abelson; Stephan F. Taylor
OBJECTIVE Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal cortex) follow unique maturational trajectories, and altered connectivity within distinct loops may be differentially associated with OCD at specific stages of development. METHOD Altered development of striatal and thalamic connectivity to medial frontal cortex was tested in 60 OCD patients compared with 61 healthy control subjects at child, adolescent, and adult stages of development, using resting-state functional connectivity MRI. RESULTS OCD in the youngest patients was associated with reduced connectivity of dorsal striatum and medial dorsal thalamus to rostral and dorsal anterior cingulate cortex, respectively. Increased connectivity of dorsal striatum to ventral medial frontal cortex was observed in patients at all developmental stages. In child patients, reduced connectivity between dorsal striatum and rostral anterior cingulate cortex correlated with OCD severity. CONCLUSIONS Frontal-striatal-thalamic loops involved in cognitive control are hypoconnected in young patients near illness onset, whereas loops implicated in emotion processing are hyperconnected throughout the illness.
Biological Psychiatry | 2011
Emily R. Stern; Robert C. Welsh; Kate D. Fitzgerald; William J. Gehring; Jamey J. Lister; Joseph A. Himle; James L. Abelson; Stephan F. Taylor
BACKGROUND Patients with obsessive-compulsive disorder (OCD) show abnormal functioning in ventral frontal brain regions involved in emotional/motivational processes, including anterior insula/frontal operculum (aI/fO) and ventromedial frontal cortex (VMPFC). While OCD has been associated with an increased neural response to errors, the influence of motivational factors on this effect remains poorly understood. METHODS To investigate the contribution of motivational factors to error processing in OCD and to examine functional connectivity between regions involved in the error response, functional magnetic resonance imaging data were measured in 39 OCD patients (20 unmedicated, 19 medicated) and 38 control subjects (20 unmedicated, 18 medicated) during an error-eliciting interference task where motivational context was varied using monetary incentives (null, loss, and gain). RESULTS Across all errors, OCD patients showed reduced deactivation of VMPFC and greater activation in left aI/FO compared with control subjects. For errors specifically resulting in a loss, patients further hyperactivated VMPFC, as well as right aI/FO. Independent of activity associated with task events, OCD patients showed greater functional connectivity between VMPFC and regions of bilateral aI/FO and right thalamus. CONCLUSIONS Obsessive-compulsive disorder patients show greater activation in neural regions associated with emotion and valuation when making errors, which could be related to altered intrinsic functional connectivity between brain networks. These results highlight the importance of emotional/motivational responses to mistakes in OCD and point to the need for further study of network interactions in the disorder.
Psychophysiology | 2010
Emily R. Stern; Yanni Liu; William J. Gehring; James J. Lister; Gang Yin; Jun Zhang; Kate D. Fitzgerald; Joseph A. Himle; James L. Abelson; Stephan F. Taylor
Patients with obsessive-compulsive disorder (OCD) show an increased error-related negativity (ERN), yet previous studies have not controlled for medication use, which may be important given evidence linking performance monitoring to neurotransmitter systems targeted by treatment, such as serotonin. In an examination of 19 unmedicated OCD patients, 19 medicated OCD patients, 19 medicated patient controls without OCD, and 21 unmedicated healthy controls, we found greater ERNs in OCD patients than in controls, irrespective of medication use. Severity of generalized anxiety and depression was associated with ERN amplitude in controls but not patients. These data confirm previous findings of an exaggerated error response in OCD, further showing that it cannot be attributed to medication. The absence in patients of a relationship between ERN amplitude and anxiety/depression, as was found in controls, suggests that elevated error signals in OCD may be disorder-specific.
The Journal of Neuroscience | 2010
Emily R. Stern; Richard Gonzalez; Robert C. Welsh; Stephan F. Taylor
Some decisions are made after obtaining several pieces of information, whereas others are reached quickly. Such differences may depend on the quality of information acquired, as well as individual variability in how cautiously evidence is evaluated. The current study examined neural activity while subjects accumulated sequential pieces of evidence and then made a decision. Uncertainty was updated with each piece of evidence, with individual ratings of subjective uncertainty characterizing underconfidence when observing evidence. Increased uncertainty during evidence accumulation was associated with activity in dorsal anterior cingulate cortex, whereas greater uncertainty when executing a decision uniquely elicited lateral frontal and parietal activity. Greater underconfidence when observing evidence correlated with activity in ventromedial prefrontal cortex. These results suggest that neural mechanisms of uncertainty depend on the stage of decision-making (belief updating vs decision) and that greater subjective uncertainty when evaluating evidence is associated with activity in ventromedial brain regions, even in the absence of overt risk.
Human Brain Mapping | 2013
Emily R. Stern; Robert C. Welsh; Richard Gonzalez; Kate D. Fitzgerald; James L. Abelson; Stephan F. Taylor
Obsessive‐compulsive disorder (OCD) is often associated with pathological uncertainty regarding whether an action has been performed correctly or whether a bad outcome will occur, leading to compulsive “evidence gathering” behaviors aimed at reducing uncertainty. The current study used event‐related functional magnetic resonance imaging to investigate neural functioning in OCD patients and controls as subjective certainty was rated in response to sequential pieces of evidence for a decision. Uncertainty was experimentally manipulated so that some decisions were associated with no “objective” uncertainty (all observed evidence pointed to one correct choice), whereas other decisions contained calculable but varying levels of objective uncertainty based on displayed probabilities. Results indicated that OCD patients differed from controls on decisions that contained no objective uncertainty, such that patients rated themselves as more uncertain. Patients also showed greater activation in a network of brain regions previously associated with internally‐focused thought and valuation including ventromedial prefrontal cortex, parahippocampus, middle temporal cortex, as well as amygdala and orbitofrontal cortex/ventral anterior insula. In the patient group, a significantly greater number of positive intersubject correlations were found among several of these brain regions, suggesting that this network is more interconnected in patients. OCD patients did not differ from controls on decisions where task parameters led to uncertainty. These results indicate that OCD is associated with hyperactivation in a network of limbic/paralimbic brain regions when making decisions, which may contribute to the greater subjective experience of doubt that characterizes the disorder. Hum Brain Mapp, 2013.
NeuroImage | 2010
Kate D. Fitzgerald; Suzanne C. Perkins; Mike Angstadt; Timothy M. Johnson; Emily R. Stern; Robert C. Welsh; Stephan F. Taylor
BACKGROUND Despite its critical role in performance-monitoring, the development of posterior medial prefrontal cortex (pMFC) in goal-directed behaviors remains poorly understood. Performance monitoring depends on distinct, but related functions that may differentially activate the pMFC, such as monitoring response conflict and detecting errors. Developmental differences in conflict- and error-related activations, coupled with age-related changes in behavioral performance, may confound attempts to map the maturation of pMFC functions. To characterize the development of pMFC-based performance monitoring functions, we segregated interference and error-processing, while statistically controlling for performance. METHODS Twenty-one adults and 23 youth performed an event-related version of the Multi-Source Interference Task during functional magnetic resonance imaging (fMRI). Linear modeling of interference and error contrast estimates derived from the pMFC were regressed on age, while covarying for performance. RESULTS Interference- and error-processing were associated with robust activation of the pMFC in both youth and adults. Among youth, interference- and error-related activation of the pMFC increased with age, independent of performance. Greater accuracy associated with greater pMFC activity during error commission in both groups. DISCUSSION Increasing pMFC response to interference and errors occurs with age, likely contributing to the improvement of performance monitoring capacity during development.
Human Brain Mapping | 2016
Benjamin A. Ely; Junqian Xu; Wayne K. Goodman; Kyle A.B. Lapidus; Vilma Gabbay; Emily R. Stern
Introduction: The habenula (Hb) is postulated to play a critical role in reward and aversion processing across species, including humans, and has been increasingly implicated in depression. However, technical constraints have limited in vivo investigation of the human Hb, and its function remains poorly characterized. We sought to overcome these challenges by examining the whole‐brain resting‐state functional connectivity of the Hb and its possible relationship to depressive symptomatology using the high‐resolution WU‐Minn Human Connectome Project (HCP) dataset. Methods: Anatomical and resting‐state functional MRI data from 50 healthy subjects with low or high subclinical depression scores (n = 25 each) were analyzed. Using novel semi‐automated segmentation and optimization techniques, we generated individual‐specific Hb seeds and calculated whole‐brain functional connectivity for the entire cohort and the contrast of high vs. low depression groups. Results: In the entire cohort, the Hb exhibited significant connectivity with key brainstem structures (i.e., ventral tegmental area, substantia nigra, pons) as well as the anterior and posterior cingulate cortices, precuneus, thalamus, and sensorimotor cortex. Multiple regions showed differential Hb connectivity based on subclinical depression scores, including the amygdala, insula, and prefrontal, mid‐cingulate, and entorhinal cortices. Conclusions: Hb connectivity findings converged on areas associated with salience processing, sensorimotor systems, and the default mode network. We also detected substantial Hb‐brainstem connectivity, consistent with prior histological and animal research. High and low subclinical depression groups exhibited differences in Hb connectivity with multiple regions previously linked to depression, suggesting the relationship between these structures as a potential target for future research and treatment. Hum Brain Mapp 37:2369–2384, 2016.
Brain Research | 2007
Emily R. Stern; Tor D. Wager; Tobias Egner; Joy Hirsch; Jennifer A. Mangels
Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.