Emily T. Farrell
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily T. Farrell.
The New England Journal of Medicine | 2014
Melissa L. Bates; Emily T. Farrell; Marlowe W. Eldridge
Investigators examined adults who had been exposed to perinatal hyperoxia as infants and report that such people may have diminished hypoxic and hyperoxic ventilatory responses.
Journal of Applied Physiology | 2012
Melissa L. Bates; Brendan R. Fulmer; Emily T. Farrell; Alyssa Drezdon; David F. Pegelow; Robert L. Conhaim; Marlowe W. Eldridge
Intrapulmonary arteriovenous anastomoses (IPAVS) directly connect the arterial and venous circulations in the lung, bypassing the capillary network. Here, we used solid, latex microspheres and isolated rat lung and intact, spontaneously breathing rat models to test the hypothesis that IPAVS are recruited by alveolar hypoxia. We found that hypoxia recruits IPAVS in the intact rat, but not the isolated lung. IPAVS are at least 70 μm in the rat and, interestingly, appear to be recruited when the mixed venous Po(2) falls below 22 mmHg. These data provide evidence that large-diameter, direct arteriovenous connections exist in the lung and are recruitable by hypoxia in the intact animal.
PLOS ONE | 2014
Melissa L. Bates; Emily T. Farrell; Alyssa Drezdon; Joseph E. Jacobson; Scott B. Perlman; Marlowe W. Eldridge
Intrapulmonary arteriovenous anastomoses (IPAVs) are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA) in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21) and hypoxic (FIO2 = 0.10) gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2) during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.
Respiratory Physiology & Neurobiology | 2013
Melissa L. Bates; De-Ann M. Pillers; Mari Palta; Emily T. Farrell; Marlowe W. Eldridge
Bronchopulmonary dysplasia (BPD), or chronic lung disease of prematurity, occurs in ~30% of preterm infants (15,000 per year) and is associated with a clinical history of mechanical ventilation and/or high inspired oxygen at birth. Here, we describe changes in ventilatory control that exist in patients with BPD, including alterations in chemoreceptor function, respiratory muscle function, and suprapontine control. Because dysfunction in ventilatory control frequently revealed when O2 supply and CO2 elimination are challenged, we provide this information in the context of four important metabolic stressors: stresses: exercise, sleep, hypoxia, and lung disease, with a primary focus on studies of human infants, children, and adults. As a secondary goal, we also identify three key areas of future research and describe the benefits and challenges of longitudinal human studies using well-defined patient cohorts.
Annals of the American Thoracic Society | 2015
Emily T. Farrell; Melissa L. Bates; David F. Pegelow; Mari Palta; Jens C. Eickhoff; Matthew J. O’Brien; Marlowe W. Eldridge
RATIONALE Preterm birth, and its often-required medical interventions, can result in respiratory and gas exchange deficits into childhood. However, the long-term sequelae into adulthood are not well understood. OBJECTIVES To determine exercise capacity and pulmonary gas exchange efficiency during exercise in adult survivors of preterm birth. METHODS Preterm (n = 14), very low birth weight (<1,500 g) adults (20-23 yr) and term-born, age-matched control subjects (n = 16) performed incremental exercise on a cycle ergometer to volitional exhaustion while breathing one of two oxygen concentrations: normoxia (fraction of inspired oxygen, 0.21) or hypoxia (fraction of inspired oxygen, 0.12). MEASUREMENTS AND MAIN RESULTS Ventilation, mixed expired gases, arterial blood gases, power output, and oxygen consumption were measured during rest and exercise. We calculated the alveolar-to-arterial oxygen difference to determine pulmonary gas exchange efficiency. Preterm subjects had lower power output at volitional exhaustion than did control subjects in normoxia (150 ± 10 vs. 180 ± 10 W; P = 0.01), despite similar normoxic oxygen consumption. However, during hypoxic exercise, there was no difference in power output at volitional exhaustion between the two groups (116 ± 10 vs. 135 ± 10 W; P = 0.11). Preterm subjects also exhibited a more acidotic, acid-base balance throughout exercise compared with control subjects. In contrast to other studies, adults born preterm, as a group developed a wider alveolar-to-arterial oxygen difference and lower PaO2 than did control subjects during normoxic but not hypoxic exercise. CONCLUSIONS This study demonstrates that pulmonary gas exchange efficiency is lower in some adult survivors of preterm birth during exercise compared with control subjects. The gas exchange inefficiency, when present, is accompanied by low arterial blood oxygen tension. Preterm subjects also exhibit reduced power output. Overall, our findings suggest potential long-term consequences of extreme preterm birth and very low birth weight on cardiopulmonary function.
Pulmonary Medicine | 2011
Melissa L. Bates; Emily T. Farrell; Marlowe W. Eldridge
The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.
Frontiers in Physiology | 2017
Emily T. Farrell; Adrian C. Grimes; Willem J. de Lange; Annie E. Armstrong; J. Carter Ralphe
Rationale: Hypertrophic cardiomyopathy (HCM) occurs in ~0.5% of the population and is a leading cause of sudden cardiac death (SCD) in young adults. Cardiomyocyte hypertrophy has been the accepted mechanism for cardiac enlargement in HCM, but the early signaling responsible for initiating hypertrophy is poorly understood. Mutations in cardiac myosin binding protein C (MYBPC3) are among the most common HCM-causing mutations. Ablation of Mybpc3 in an HCM mouse model (cMyBP-C−/−) rapidly leads to cardiomegaly by postnatal day (PND) 9, though hearts are indistinguishable from wild-type (WT) at birth. This model provides a unique opportunity to explore early processes involved in the dramatic postnatal transition to hypertrophy. Methods and Results: We performed microarray analysis, echocardiography, qPCR, immunohistochemistry (IHC), and isolated cardiomyocyte measurements to characterize the perinatal cMyBP-C−/− phenotype before and after overt hypertrophy. cMyBP-C−/− hearts showed elevated cell cycling at PND1 that transitioned to hypertrophy by PND9. An expanded time course revealed that increased cardiomyocyte cycling was associated with elevated heart weight to body weight ratios prior to cellular hypertrophy, suggesting that cell cycling resulted in cardiomyocyte proliferation. Animals heterozygous for the cMyBP-C deletion trended in the direction of the homozygous null, yet did not show increased heart size by PND9. Conclusions: Results indicate that altered regulation of the cell cycling pathway and elevated proliferation precedes hypertrophy in the cMyBP-C−/− HCM model, and suggests that increased cardiomyocyte number contributes to increased heart size in cMyBP-C−/− mice. This pre-hypertrophic period may reflect a unique time during which the commitment to HCM is determined and disease severity is influenced.
The Journal of Physiology | 2013
Melissa L. Bates; Jessica Hotter; Han Zhang; Emily T. Farrell
Cardiacoutput,muscleoxygendeliveryand oxygen extraction are hypothesized to limit maximal oxygen consumption ( ˙ VO2max )i n healthy individuals. Much work aiming to address the long-standing question of cardiac output limitation has focused on the capacity of the left ventricle to increase stroke volume with substantially less focus on the importance of the right ventricle. The right ventricle is thin-walled, crescent shaped and generally less resistant to afterload stress than the left ventricle. While the increase in mean pressure encountered by the left ventricle during exercise is ∼25%, the right ventricle encounters a threeto four-fold increase in mean pulmonary vascular pressure. Indeed, elite endurance athletes experience acute right ventricular dysfunction and show evidence of right ventricular fibrosis after a race (3‐11 h) although left ventricular structure and function are unaffected (La Gerche et al. 2012). Within our group, we have frequently discussed how the right ventricle might be limited in its ability to increase cardiac output in the face of hypertensive pulmonary vascular pressures and find the question of whether right ventricular afterload stress impacts exercise capacity in healthy individuals breathing room air to be intriguing. Thus, we were excited to have the opportunity to discuss the recent paper entitled ‘Pulmonary vascular distensibility predicts aerobic capacity in healthy humans’, published (Lalande et al. 2012). Here, Lalande et al. hypothesized that the distensibility of the pulmonary vasculature predicts ˙ VO2max in healthy humans.
Journal of Molecular and Cellular Cardiology | 2018
Xi Chen; Craig S. Weber; Emily T. Farrell; Francisco J. Alvarado; Yan Ting Zhao; Ana M. Gómez; Héctor H. Valdivia
Sorcin, a penta-EF hand Ca2+-binding protein expressed in cardiomyocytes, is known to interact with ryanodine receptors and other Ca2+ regulatory proteins. To investigate sorcins influence on cardiac excitation-contraction coupling and its role in the development of cardiac malfunctions, we generated a sorcin knockout (KO) mouse model. Sorcin KO mice presented ventricular arrhythmia and sudden death when challenged by acute stress induced by isoproterenol plus caffeine. Chronic stress, which was induced by transverse aortic constriction, significantly decreased the survival rate of sorcin KO mice. Under isoproterenol stimulation, spontaneous Ca2+ release events were frequently observed in sorcin KO cardiomyocytes. Sorcin KO hearts of adult, but not young mice developed overexpression of L-type Ca2+ channel and Na+-Ca2+ exchanger, which enhanced ICa and INCX. Consequently, spontaneous Ca2+ release events in sorcin KO cardiomyocytes were more likely to induce arrhythmogenic delayed afterdepolarizations. Our study demonstrates sorcin deficiency may trigger cardiac ventricular arrhythmias due to Ca2+ disturbances, and evidences the critical role of sorcin in maintaining Ca2+ homeostasis, especially during the adrenergic response of the heart.
Frontiers in Physiology | 2018
Emily T. Farrell; Annie E. Armstrong; Adrian C. Grimes; Francisco J. Naya; Willem J. de Lange; J. Carter Ralphe
Rationale: With a prevalence of 1 in 200 individuals, hypertrophic cardiomyopathy (HCM) is thought to be the most common genetic cardiac disease, with potential outcomes that include severe hypertrophy, heart failure, and sudden cardiac death (SCD). Though much research has furthered our understanding of how HCM-causing mutations in genes such as cardiac myosin-binding protein C (MYBPC3) impair contractile function, it remains unclear how such dysfunction leads to hypertrophy and/or arrhythmias, which comprise the HCM phenotype. Identification of early response mediators could provide rational therapeutic targets to reduce disease severity. Our goal was to differentiate physiologic and pathophysiologic hypertrophic growth responses and identify early genetic mediators in the development of cardiomegaly in the cardiac myosin-binding protein C-null (cMyBP-C-/-) mouse model of HCM. Methods and Results: We performed microarray analysis on left ventricles of wild-type (WT) and cMyBPC-/- mice (n = 7 each) at postnatal day (PND) 1 and PND 9, before and after the appearance of an overt HCM phenotype. Applying the criteria of ≥2-fold change, we identified genes whose change was exclusive to pathophysiologic growth (n = 61), physiologic growth (n = 30), and genes whose expression changed ≥2-fold in both WT and cMyBP-C-/- hearts (n = 130). Furthermore, we identified genes that were dysregulated in PND1 cMyBP-C-/- hearts prior to hypertrophy, including genes in mechanosensing pathways and potassium channels linked to arrhythmias. One gene of interest, Xirp2, and its protein product, are regulated during growth but also show early, robust prehypertrophic upregulation in cMyBP-C-/- hearts. Additionally, the transcription factor Zbtb16 also shows prehypertrophic upregulation at both gene and protein levels. Conclusion: Our transcriptome analysis generated a comprehensive data set comparing physiologic vs. hypertrophic growth in mice lacking cMyBP-C. It highlights the importance of extracellular matrix pathways in hypertrophic growth and early dysregulation of potassium channels. Prehypertrophic upregulation of Xirp2 in cMyBP-C-/- hearts supports a growing body of evidence suggesting Xirp2 has the capacity to elicit both hypertrophy and arrhythmias in HCM. Dysregulation of Xirp2, as well as Zbtb16, along with other genes associated with mechanosensing regions of the cardiomyocyte implicate stress-sensing in these regions as a potentially important early response in HCM.