Emma C. Reilly
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emma C. Reilly.
PLOS Pathogens | 2011
Marlowe S. Tessmer; Emma C. Reilly; Laurent Brossay
Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.
PLOS ONE | 2012
Emma C. Reilly; Elizabeth A. Thompson; Sandrine Aspeslagh; Jack R. Wands; Dirk Elewaut; Laurent Brossay
α-galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8+ T cells, as a consequence of reduced inflammation.
Cytokine | 2010
Emma C. Reilly; Jack R. Wands; Laurent Brossay
Invariant NKT (iNKT) cells have been extensively studied throughout the last decade due to their ability to polarize and amplify the downstream immune response. Only recently however, have the various mechanisms underlying NKT cell activation begun to unfold. iNKT cells have the ability to respond as innate immune cells with minimal TCR involvement as well as through direct TCR recognition of glycolipid antigens. Additionally, the existence of several subsets of iNKT cells creates the potential for other unique pathways, which are not yet clearly defined. Here, we provide an overview of the known mechanisms of invariant NKT cell activation, focusing on cytokine driven pathways and the resulting cytokine responses.
PLOS ONE | 2016
Emma C. Reilly; Kris Lambert-Emo; David J. Topham
After disease resolution, a small subset of influenza specific CD8+ T cells can remain in the airways of the lung as a tissue resident memory population (TRM). These cells are critical for protection from subsequent infections with heterosubtypic influenza viruses. Although it is well established that expression of the collagen IV binding integrin alpha 1 is necessary for the retention and maintenance of TRM cells, other requirements allowing them to localize to the airways and persist are less well understood. We recently demonstrated that inhibition of neutrophils or neutrophil derived chemokine CXCL12 during acute influenza virus infection reduces the effector T cell response and affects the ability of these cells to localize to the airways. We therefore sought to determine whether the defects that occur in the absence of neutrophils would persist throughout resolution of the disease and impact the development of the TRM population. Interestingly, the early alterations in the CD8+ T cell response recover by two weeks post-infection, and mice form a protective population of TRM cells. Overall, these observations show that acute neutrophil depletion results in a delay in the effector CD8+ T cell response, but does not adversely impact the development of TRM.
Journal of Immunology | 2016
Timothy K. Erick; Courtney K. Anderson; Emma C. Reilly; Jack R. Wands; Laurent Brossay
The submandibular salivary gland (SMG), a major site of persistent infection for many viruses, contains a large NK cell population. Using NFIL3-deficient mice, PLZF reporter/fate mapping mice, and mixed bone marrow chimeras, we identified two distinct populations of NK cells in the SMG. Although phenotypically unique, the main population relies on NFIL3, but not PLZF, for development and, therefore, is developmentally similar to the conventional NK cell subset. In contrast, we found that approximately one quarter of the SMG NK cells develop independently of NFIL3. Interestingly, NFIL3-independent SMG tissue-resident NK (trNK) cells are developmentally distinct from liver trNK cells. We also demonstrated that the SMG NK cell hyporesponsive phenotype during murine CMV infection is tissue specific and not cell intrinsic. In contrast, NFIL3-independent SMG trNK cells are intrinsically hyporesponsive. Altogether, our data show that the SMG tissue environment shapes a unique repertoire of NK-like cells with distinct phenotypes.
Virology | 2017
Laura Rodriguez; Aitor Nogales; Emma C. Reilly; David J. Topham; Pablo R. Murcia; Colin R. Parrish; Luis Martinez Sobrido
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Journal of Virology | 2017
Aitor Nogales; Laura Rodriguez; Caroline Chauché; Kai Huang; Emma C. Reilly; David J. Topham; Pablo R. Murcia; Colin R. Parrish; Luis Martínez-Sobrido
ABSTRACT Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo. The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Journal of Immunology | 2015
Courtney K. Anderson; Alexander I. Salter; Leon Toussaint; Emma C. Reilly; Céline Fugère; Neetu Srivastava; William G. Kerr; Laurent Brossay
SHIP1 is a 5′-inositol phosphatase known to negatively regulate the signaling product of the PI3K pathway, phosphatidylinositol (3–5)-trisphosphate. SHIP1 is recruited to a large number of inhibitory receptors expressed on invariant NK (iNKT) cells. We hypothesized that SHIP1 deletion would have major effects on iNKT cell development by altering the thresholds for positive and negative selection. Germline SHIP1 deletion has been shown to affect T cells as well as other immune cell populations. However, the role of SHIP1 on T cell function has been controversial, and its participation on iNKT cell development and function has not been examined. We evaluated the consequences of SHIP1 deletion on iNKT cells using germline-deficient mice, chimeric mice, and conditionally deficient mice. We found that T cell and iNKT cell development are impaired in germline-deficient animals. However, this phenotype can be rescued by extrinsic expression of SHIP1. In contrast, SHIP1 is required cell autonomously for optimal iNKT cell cytokine secretion. This suggests that SHIP1 calibrates the threshold of iNKT cell reactivity. These data further our understanding of how iNKT cell activation is regulated and provide insights into the biology of this unique cell lineage.
PLOS Pathogens | 2016
Kris Lambert Emo; Young-Min Hyun; Emma C. Reilly; Christopher Barilla; Scott A. Gerber; Deborah J. Fowell; Minsoo Kim; David J. Topham
During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.
Frontiers in Immunology | 2017
S. M. Shahjahan Miah; Chathuraka T. Jayasuriya; Alexander I. Salter; Emma C. Reilly; Céline Fugère; Wentian Yang; Qian Chen; Laurent Brossay
The ubiquitously expressed tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2 (SHP-2, encoded by Ptpn11) is required for constitutive cellular processes including proliferation, differentiation, and the regulation of immune responses. During development and maturation, subsets of T cells express a variety of inhibitory receptors known to associate with phosphatases, which in turn, dephosphorylate key players of activating receptor signaling pathways. We hypothesized that SHP-2 deletion would have major effects on T cell development by altering the thresholds for activation, as well as positive and negative selection. Surprisingly, using mice conditionally deficient for SHP-2 in the T cell lineage, we show that the development of these lymphocytes is globally intact. In addition, our data demonstrate that SHP-2 absence does not compromise T cell effector functions, suggesting that SHP-2 is dispensable in these cells. Unexpectedly, in aging mice, Ptpn11 gene deletion driven by CD4 Cre recombinase leads to cartilage tumors in wrist bones in a T cell-independent manner. These tumors resemble miniature cartilaginous growth plates and contain CD4-lineage positive chondrocyte-like cells. Altogether these results indicate that SHP-2 is a cartilage tumor suppressor during aging.