Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma Muñoz-Moreno is active.

Publication


Featured researches published by Emma Muñoz-Moreno.


NeuroImage | 2012

Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

Dafnis Batalle; Elisenda Eixarch; Francesc Figueras; Emma Muñoz-Moreno; Nuria Bargalló; Miriam Illa; Ruthy Acosta-Rojas; Ivan Amat-Roldan; Eduard Gratacós

Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the architecture of neural circuitry and developing imaging biomarkers of poor neurodevelopment outcome in infants with prenatal diseases.


PLOS ONE | 2012

Neonatal Neurobehavior and Diffusion MRI Changes in Brain Reorganization Due to Intrauterine Growth Restriction in a Rabbit Model

Elisenda Eixarch; Dafnis Batalle; Miriam Illa; Emma Muñoz-Moreno; Ariadna Arbat-Plana; Ivan Amat-Roldan; Francesc Figueras; Eduard Gratacós

Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with a high risk of abnormal neurodevelopment. The timing and patterns of brain reorganization underlying IUGR are poorly documented. We developed a rabbit model of IUGR allowing neonatal neurobehavioral assessment and high resolution brain diffusion magnetic resonance imaging (MRI). The aim of the study was to describe the pattern and functional correlates of fetal brain reorganization induced by IUGR. Methodology/Principal Findings IUGR was induced in 10 New Zealand fetal rabbits by ligation of 40–50% of uteroplacental vessels in one horn at 25 days of gestation. Ten contralateral horn fetuses were used as controls. Cesarean section was performed at 30 days (term 31 days). At postnatal day +1, neonates were assessed by validated neurobehavioral tests including evaluation of tone, spontaneous locomotion, reflex motor activity, motor responses to olfactory stimuli, and coordination of suck and swallow. Subsequently, brains were collected and fixed and MRI was performed using a high resolution acquisition scheme. Global and regional (manual delineation and voxel based analysis) diffusion tensor imaging parameters were analyzed. IUGR was associated with significantly poorer neurobehavioral performance in most domains. Voxel based analysis revealed fractional anisotropy (FA) differences in multiple brain regions of gray and white matter, including frontal, insular, occipital and temporal cortex, hippocampus, putamen, thalamus, claustrum, medial septal nucleus, anterior commissure, internal capsule, fimbria of hippocampus, medial lemniscus and olfactory tract. Regional FA changes were correlated with poorer outcome in neurobehavioral tests. Conclusions IUGR is associated with a complex pattern of brain reorganization already at birth, which may open opportunities for early intervention. Diffusion MRI can offer suitable imaging biomarkers to characterize and monitor brain reorganization due to fetal diseases.


PLOS ONE | 2013

The Ins and Outs of the BCCAo Model for Chronic Hypoperfusion: A Multimodal and Longitudinal MRI Approach

Guadalupe Soria; Raúl Tudela; Ana Márquez-Martín; Lluïsa Camón; Dafnis Batalle; Emma Muñoz-Moreno; Elisenda Eixarch; Josep Puig; Salvador Pedraza; Elisabet Vila; Alberto Prats-Galino; Anna M. Planas

Cerebral hypoperfusion induced by bilateral common carotid artery occlusion (BCCAo) in rodents has been proposed as an experimental model of white matter damage and vascular dementia. However, the histopathological and behavioral alterations reported in this model are variable and a full characterization of the dynamic alterations is not available. Here we implemented a longitudinal multimodal magnetic resonance imaging (MRI) design, including time-of-flight angiography, high resolution T1-weighted images, T2 relaxometry mapping, diffusion tensor imaging, and cerebral blood flow measurements up to 12 weeks after BCCAo or sham-operation in Wistar rats. Changes in MRI were related to behavioral performance in executive function tasks and histopathological alterations in the same animals. MRI frequently (70%) showed various degrees of acute ischemic lesions, ranging from very small to large subcortical infarctions. Independently, delayed MRI changes were also apparent. The patterns of MRI alterations were related to either ischemic necrosis or gliosis. Progressive microstructural changes revealed by diffusion tensor imaging in white matter were confirmed by observation of myelinated fiber degeneration, including severe optic tract degeneration. The latter interfered with the visually cued learning paradigms used to test executive functions. Independently of brain damage, BCCAo induced progressive arteriogenesis in the vertebrobasilar tree, a process that was associated with blood flow recovery after 12 weeks. The structural alterations found in the basilar artery were compatible with compensatory adaptive changes driven by shear stress. In summary, BCCAo in rats induces specific signatures in multimodal MRI that are compatible with various types of histological lesion and with marked adaptive arteriogenesis.


PLOS ONE | 2013

Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

Miriam Illa; Elisenda Eixarch; Dafnis Batalle; Ariadna Arbat-Plana; Emma Muñoz-Moreno; Francesc Figueras; Eduard Gratacós

Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.


PLOS ONE | 2013

A magnetic resonance image based atlas of the rabbit brain for automatic parcellation.

Emma Muñoz-Moreno; Ariadna Arbat-Plana; Dafnis Batalle; Guadalupe Soria; Miriam Illa; Alberto Prats-Galino; Elisenda Eixarch; Eduard Gratacós

Rabbit brain has been used in several works for the analysis of neurodevelopment. However, there are not specific digital rabbit brain atlases that allow an automatic identification of brain regions, which is a crucial step for various neuroimage analyses, and, instead, manual delineation of areas of interest must be performed in order to evaluate a specific structure. For this reason, we propose an atlas of the rabbit brain based on magnetic resonance imaging, including both structural and diffusion weighted, that can be used for the automatic parcellation of the rabbit brain. Ten individual atlases, as well as an average template and probabilistic maps of the anatomical regions were built. In addition, an example of automatic segmentation based on this atlas is described.


NeuroImage: Clinical | 2016

Brain network characterization of high-risk preterm-born school-age children.

Elda Fischi-Gomez; Emma Muñoz-Moreno; Lana Vasung; Alessandra Griffa; Cristina Borradori-Tolsa; Maryline Monnier; François Lazeyras; Jean-Philippe Thiran; Petra Susan Hüppi

Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP) and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR). While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP) does not result in a worse outcome. In such cases, the alteration in network topology appears mainly driven by the effect of extreme prematurity, suggesting that these brain network alterations present at school age have their origin in a common critical period, both for intrauterine and extrauterine adverse conditions.


American Journal of Obstetrics and Gynecology | 2016

Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction

Elisenda Eixarch; Emma Muñoz-Moreno; Nuria Bargalló; Dafnis Batalle; Eduard Gratacós

BACKGROUNDnIntrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction.nnnOBJECTIVESnIn this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether thesexa0parameters were related with their specific function in order toxa0explore its potential use as an imaging biomarker of altered neurodevelopment.nnnMETHODSnWe included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age.nnnRESULTSnReduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; Pxa0= .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; Pxa0= .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vsxa00.399 ± 0.034; Pxa0= .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; Pxa0=xa0.016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rhoxa0= 0.857; integrity: rhoxa0= 0.740); cortico-striatal-thalamic network metrics werexa0correlated with cognitive (fractional anisotropy: rhoxa0= 0.793; integrity, rhoxa0= 0.762) and socioemotional scale (fractional anisotropy: rhoxa0= 0.850; integrity: rhoxa0= 0.877).nnnCONCLUSIONSnThese results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases.


medical image computing and computer assisted intervention | 2011

Predictive modeling of cardiac fiber orientation using the knutsson mapping

Karim Lekadir; Babak Ghafaryasl; Emma Muñoz-Moreno; Constantine Butakoff; Corné Hoogendoorn; Alejandro F. Frangi

The construction of realistic subject-specific models of the myocardial fiber architecture is relevant to the understanding and simulation of the electromechanical behavior of the heart. This paper presents a statistical approach for the prediction of fiber orientation from myocardial morphology based on the Knutsson mapping. In this space, the orientation of each fiber is represented in a continuous and distance preserving manner, thus allowing for consistent statistical analysis of the data. Furthermore, the directions in the shape space which correlate most with the myocardial fiber orientations are extracted and used for subsequent prediction. With this approach and unlike existing models, all shape information is taken into account in the analysis and the obtained latent variables are statistically optimal to predict fiber orientation in new datasets. The proposed technique is validated based on a sample of canine Diffusion Tensor Imaging (DTI) datasets and the results demonstrate marked improvement in cardiac fiber orientation modeling and prediction.


Cortex | 2016

Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction

Dafnis Batalle; Emma Muñoz-Moreno; Cristian Tornador; Nuria Bargalló; Gustavo Deco; Elisenda Eixarch; Eduard Gratacós

The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment.


PLOS ONE | 2015

In Vivo Detection of Perinatal Brain Metabolite Changes in a Rabbit Model of Intrauterine Growth Restriction (IUGR)

Rui V. Simões; Emma Muñoz-Moreno; Rodrigo J. Carbajo; Anna Gonzalez-Tendero; Miriam Illa; M. Sanz-Cortes; Antonio Pineda-Lucena; Eduard Gratacós

Background Intrauterine growth restriction (IUGR) is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI) and spectroscopy (MRS), to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation. Methods IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40–50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i) absolute metabolite quantifications, using linear fitting; (ii) local temperature estimations, based on the water chemical shift; and (iii) classification, using spectral pattern analysis. Results Lower birth weight was associated with (i) smaller brain sizes, (ii) slightly lower brain temperatures, and (iii) differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA) in the cerebral cortex and hippocampus (suggesting neuronal impairment), and higher glycine levels in the striatum (possible marker of brain injury). Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum. Conclusions IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.

Collaboration


Dive into the Emma Muñoz-Moreno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Illa

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Gratacós

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Figueras

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge