Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma Roberts is active.

Publication


Featured researches published by Emma Roberts.


Nature | 2006

An SCN9A channelopathy causes congenital inability to experience pain.

James J. Cox; Frank Reimann; Adeline K. Nicholas; G Thornton; Emma Roberts; K Springell; Gulshan Karbani; H Jafri; J Mannan; Y Raashid; Lihadh Al-Gazali; H Hamamy; Enza Maria Valente; S Gorman; R Williams; Duncan P. McHale; John N. Wood; Fiona M. Gribble; Christopher Geoffrey Woods

The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the α-subunit of the voltage-gated sodium channel, Nav1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Nav1.7 by co-expression of wild-type or mutant human Nav1.7 with sodium channel β1 and β2 subunits in HEK293 cells. In cells expressing mutant Nav1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.


Nature Genetics | 2005

A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size

Jacquelyn Bond; Emma Roberts; Kelly Springell; Sophia Lizarraga; Sheila Scott; Julie Higgins; Daniel J. Hampshire; Ewan E. Morrison; Gabriella F Leal; Elias O Silva; Suzana Maria Ramos Costa; Diana Baralle; Michela Raponi; Gulshan Karbani; Yasmin Rashid; Hussain Jafri; Christopher Bennett; Peter Corry; Christopher A. Walsh; C. Geoffrey Woods

Autosomal recessive primary microcephaly is a potential model in which to research genes involved in human brain growth. We show that two forms of the disorder result from homozygous mutations in the genes CDK5RAP2 and CENPJ. We found neuroepithelial expression of the genes during prenatal neurogenesis and protein localization to the spindle poles of mitotic cells, suggesting that a centrosomal mechanism controls neuron number in the developing mammalian brain.


Nature Genetics | 1999

Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis.

Carmel Toomes; Jacqueline James; A. J. Wood; Chu Lee Wu; Derek McCormick; N. Lench; Chelsee Hewitt; L. Moynihan; Emma Roberts; C. G. Woods; A.F. Markham; Melanie Wong; Richard P Widmer; Khaled Abdul Ghaffar; M. Pemberton; Ibtessam Ramzy Hussein; Samia A. Temtamy; Rhodri Davies; Andrew P. Read; Philip Sloan; Michael J. Dixon; Nalin Thakker

Papillon-Lefèvre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients. Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. Some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset. The PLS locus has been mapped to chromosome 11q14–q21 (refs 7, 8, 9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.


American Journal of Human Genetics | 2002

Identification of Microcephalin, a Protein Implicated in Determining the Size of the Human Brain

Andrew Jackson; Helen Eastwood; Sandra M. Bell; Jimi Adu; Carmel Toomes; Ian M. Carr; Emma Roberts; Daniel J. Hampshire; Yanick J. Crow; Alan J. Mighell; Gulshan Karbani; Hussain Jafri; Yasmin Rashid; Robert F. Mueller; Alexander F. Markham; C. Geoffrey Woods

Primary microcephaly (MIM 251200) is an autosomal recessive neurodevelopmental condition in which there is a global reduction in cerebral cortex volume, to a size comparable with that of early hominids. We previously mapped the MCPH1 locus, for primary microcephaly, to chromosome 8p23, and here we report that a gene within this interval, encoding a BRCA1 C-terminal domain-containing protein, is mutated in MCPH1 families sharing an ancestral 8p23 haplotype. This gene, microcephalin, is expressed in the developing cerebral cortex of the fetal brain. Further study of this and related genes may provide important new insights into neocortical development and evolution.


Nature Genetics | 2010

WDR62 is associated with the spindle pole and is mutated in human microcephaly

Adeline K. Nicholas; Maryam Khurshid; Julie Désir; Ofélia P. Carvalho; James J. Cox; Gemma Thornton; Rizwana Kausar; Muhammad Ansar; Wasim Ahmad; Alain Verloes; Sandrine Passemard; Jean Paul Misson; Susan Lindsay; Fanni Gergely; William B. Dobyns; Emma Roberts; Marc Abramowicz; C. Geoffrey Woods

Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.


Nature Genetics | 2003

Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein.

Lm McGregor; Vile Makela; S Darling; Sofia Vrontou; Georges Chalepakis; Catherine Roberts; Nicola Smart; Paul Rutland; Natalie J. Prescott; Jason Hopkins; Elizabeth Bentley; Alison Shaw; Emma Roberts; Robert F. Mueller; Shalini Jadeja; Nicole Philip; John Nelson; Christine Francannet; Antonio Perez-Aytes; André Mégarbané; Bronwyn Kerr; Brandon J. Wainwright; Adrian S. Woolf; Robin M. Winter; Peter J. Scambler

Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.


American Journal of Human Genetics | 2003

Protein-Truncating Mutations in ASPM Cause Variable Reduction in Brain Size

Jacquelyn Bond; Sheila Scott; Daniel J. Hampshire; Kelly Springell; Peter Corry; Marc Abramowicz; Ganesh H. Mochida; Raoul C. M. Hennekam; Eamonn R. Maher; Jean-Pierre Fryns; Abdulrahman Alswaid; Hussain Jafri; Yasmin Rashid; Ammar Mubaidin; Christopher A. Walsh; Emma Roberts; C. Geoffrey Woods

Mutations in the ASPM gene at the MCPH5 locus are expected to be the most common cause of human autosomal recessive primary microcephaly (MCPH), a condition in which there is a failure of normal fetal brain development, resulting in congenital microcephaly and mental retardation. We have performed the first comprehensive mutation screen of the 10.4-kb ASPM gene, identifying all 19 mutations in a cohort of 23 consanguineous families. Mutations occurred throughout the ASPM gene and were all predicted to be protein truncating. Phenotypic variation in the 51 affected individuals occurred in the degree of microcephaly (5-11 SDs below normal) and of mental retardation (mild to severe) but appeared independent of mutation position.


Journal of Medical Genetics | 2001

Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36

Daniel J. Hampshire; Emma Roberts; Yanick J. Crow; Jacquelyn Bond; Ammar Mubaidin; Abdul-Latif Wriekat; Amir S. Najim Al-Din; Christopher Geoffrey Woods

Kufor-Rakeb syndrome is an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration. The onset is in the teenage years with clinical features of Parkinsons disease plus spasticity, supranuclear upgaze paresis, and dementia. Brain scans show atrophy of the globus pallidus and pyramids and, later, widespread cerebral atrophy. We report linkage in Kufor-Rakeb syndrome to a 9 cM region of chromosome 1p36 delineated by the markers D1S436 and D1S2843, with a maximum multipoint lod score of 3.6.


American Journal of Human Genetics | 2006

Mutations in WNT7A Cause a Range of Limb Malformations, Including Fuhrmann Syndrome and Al-Awadi/Raas-Rothschild/Schinzel Phocomelia Syndrome

C. G. Woods; Sigmar Stricker; Petra Seemann; Rowena Stern; James J. Cox; E. Sherridan; Emma Roberts; Kelly Springell; Sheila Scott; Gulshan Karbani; Saghira Malik Sharif; Carmel Toomes; Jacquelyn Bond; Dhavendra Kumar; Lihadh Al-Gazali; Stefan Mundlos

Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.


Journal of Medical Genetics | 2002

Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation

Emma Roberts; Daniel J. Hampshire; L Pattison; Kelly Springell; Hussain Jafri; Peter Corry; J Mannon; Yasmin Rashid; Yanick J. Crow; Jacquelyn Bond; Christopher Geoffrey Woods

Background and objectives: Locus heterogeneity is well established in autosomal recessive primary microcephaly (MCPH) and to date five loci have been mapped. However, the relative contributions of these loci have not been assessed and genotype-phenotype correlations have not been investigated. Design: A study population of 56 consanguineous families resident in or originating from northern Pakistan was ascertained and assessed by the authors. A panel of microsatellite markers spanning each of the MCPH loci was designed, against which the families were genotyped. Results: The head circumference of the 131 affected subjects ranged from 4 to 14 SD below the mean, but there was little intrafamilial variation among affecteds (± 1 SD). MCPH5 was the most prevalent, with 24/56 families consistent with linkage; 2/56 families were compatible with linkage to MCPH1, 10/56 to MCPH2, 2/56 to MCPH3, none to MCPH4, and 18/56 did not segregate with any of the loci. Conclusions: MCPH5 is the most common locus in this population. On clinical grounds alone, the phenotype of families linked to each MCPH locus could not be distinguished. We have also shown that further MCPH loci await discovery with a number of families as yet unlinked.

Collaboration


Dive into the Emma Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gulshan Karbani

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Yasmin Rashid

King Edward Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanick J. Crow

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Kelly Springell

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J. Lench

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert F. Mueller

St James's University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge