Emma S. Child
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emma S. Child.
Cell Cycle | 2006
Emma S. Child; David J. Mann
p21 was originally described as functioning as a cell cycle regulator via inhibition of both cyclin-dependent kinases and processive DNA replication. Nowadays it is recognised to play other fundamental roles including transcriptional regulation and the modulation of apoptosis. Each of these functions of p21 is achieved through direct p21/protein interactions and the subcellular localisation of p21 plays an important part in dictating the binding partners to which p21 is exposed. Over recent years, a number of phosphorylation sites in p21 have been identified, these being targeted by several important intracellular signalling protein kinases. Here we review the state of our knowledge of p21 phosphorylation with respect to the kinases involved and the molecular biological effects of each phosphorylation event.
Molecular and Cellular Biology | 2006
Annika Järviluoma; Emma S. Child; Grzegorz Sarek; Papinya Sirimongkolkasem; Gordon Peters; Päivi M. Ojala; David J. Mann
ABSTRACT K cyclin encoded by Kaposis sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.
Journal of Biological Chemistry | 2010
Anett Marais; Zongling Ji; Emma S. Child; Eberhard Krause; David J. Mann; Andrew D. Sharrocks
Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occurs in a cyclin-dependent kinase (CDK)·cyclin-dependent manner with CDK1·cyclin B as the major kinase complex, although CDK2 and cyclin A also appear to be important. We have mapped two CDK phosphorylation sites, serines 368 and 423, which play a role in defining FOXK2 function through regulating its stability and its activity as a transcriptional repressor protein. These two CDK sites appear vital for FOXK2 function because expression of a mutant lacking these sites cannot be tolerated and causes apoptosis.
Oncogene | 2001
Emma S. Child; David J. Mann
Viral DNA replication is generally dependent upon circumventing host cell cycle control to force S phase entry in an otherwise quiescent cell. Here we describe novel attributes of the cyclin encoded by Human Herpesvirus 8 (K cyclin) that enable it to subvert the quiescent state. K cyclin is most similar to the mammalian D-type cyclins in primary sequence but displays properties more akin to those of cyclin E. K cyclin (like cyclin E) can autonomously couple with its cognate cdk subunit and localize to the nucleus. D-type cyclins require mitogen stimulated accessory factors (such as p21Cip1 and p27Kip1) to facilitate both of these processes. A striking difference between K cyclin and mammalian cyclins is that K cyclin binding to cdk6 can substantially activate the catalytic activity of the complex without the requirement for cyclin H/cdk7 phosphorylation of the cdk T-loop; this phosphorylation is obligatory for endogenous cyclin/cdk activity. However, K cyclin/cdk6 complexes are not totally immune from cell cycle control since CAK phosphorylation is necessary for complete activation. Thus, CAK phosphorylated K cyclin/cdk6 targets multiple sites in the retinoblastoma protein (pRb) whereas the unphosphorylated complex targets a single site. The restricted substrate specificity of the non-CAK phosphorylated K cyclin/cdk6 complex is insufficient to enable K cyclin-mediated S phase entry. Thus, the viral K cyclin is reliant upon endogenous CAK activity to subvert the quiescent state.
Bioorganic & Medicinal Chemistry Letters | 2009
Sarah E. Lee; Lucy M. Elphick; Alexandra Anderson; Laurent Bonnac; Emma S. Child; David J. Mann; Véronique Gouverneur
We hereby present a simple yet novel chemical synthesis of a family of gamma-modified ATPs bearing functional groups on the gamma-phosphate that are amenable to further derivatization by highly selective chemical manipulations (e.g., click chemistry, Staudinger ligations). A preliminary screen of these compounds as phosphate donors with a typical wild type protein kinase (cdk2) and one of its known substrates p27(kip1) is also presented.
Organic and Biomolecular Chemistry | 2010
Laurent Bonnac; Sarah E. Lee; Guy T. Giuffredi; Lucy M. Elphick; Alexandra Anderson; Emma S. Child; David J. Mann; Véronique Gouverneur
Enantioenriched tetrafluorinated aryl-C-nucleosides were synthesised in four steps from 1-benzyloxy-4-bromo-3,3,4,4-tetrafluorobutan-2-ol. The presence of the tetrafluorinated ethylene group is compatible with O-phosphorylation of the primary alcohol, as demonstrated by the successful preparation of the tetrafluorinated naphthyl-C-nucleotide.
Bioorganic & Medicinal Chemistry Letters | 2009
Sarah E. Lee; Lucy M. Elphick; Alexandra Anderson; Laurent Bonnac; Emma S. Child; David J. Mann
We hereby present a simple yet novel chemical synthesis of a family of gamma-modified ATPs bearing functional groups on the gamma-phosphate that are amenable to further derivatization by highly selective chemical manipulations (e.g., click chemistry, Staudinger ligations). A preliminary screen of these compounds as phosphate donors with a typical wild type protein kinase (cdk2) and one of its known substrates p27(kip1) is also presented.
ChemBioChem | 2009
Lucy M. Elphick; Sarah E. Lee; Emma S. Child; Aarathi Prasad; Cristina Pignocchi; Sébastien Thibaudeau; Alexandra Anderson; Laurent Bonnac; Véronique Gouverneur; David J. Mann
Mutant kinase kinetics: Protein kinases with enlarged ATP binding sites are increasingly being used as tools to probe the functioning signal transduction cascades. Using human cyclin‐dependent kinase 2 as a model system, we demonstrate that enlargement of the ATP binding site does not substantially alter either the catalysis kinetics nor substrate or phosphorylation site selection.
Molecular and Cellular Biology | 2006
Inês Soeiro; Azim Mohamedali; Hanna M. Romanska; Nicholas Lea; Emma S. Child; Janet Glassford; S J Orr; Claudia Roberts; Kikkeri N. Naresh; El-Nasir Lalani; David J. Mann; Roger J. Watson; N. Shaun B. Thomas; Eric Lam
ABSTRACT To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1−/−; p130−/− mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1−/− counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1−/−; p130−/− animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1−/− splenocytes. The finding that the p27Kip1−/−; p130−/− splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.
Biochimica et Biophysica Acta | 2010
Emma S. Child; Tereza Hendrychová; Karen McCague; Andy Futreal; Michal Otyepka; David J. Mann
Cyclin-dependent kinase 2 (cdk2) is a central regulator of the mammalian cell cycle. Here we describe the properties of a mutant form of cdk2 identified during large-scale sequencing of protein kinases from cancerous tissue. The mutation substituted a leucine for a proline in the PSTAIRE helix, the central motif in the interaction of the cdk with its regulatory cyclin subunit. We demonstrate that whilst the mutant cdk2 is considerably impaired in stable cyclin association, it is still able to generate an active kinase that can functionally complement defective cdks in vivo. Molecular dynamic simulations and biophysical measurements indicate that the observed biochemical properties likely stem from increased flexibility within the cyclin-binding helix.