Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma T. Bowden is active.

Publication


Featured researches published by Emma T. Bowden.


Oncogene | 1999

An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation

Emma T. Bowden; Mara Barth; Dianne Thomas; Robert I. Glazer; Susette C. Mueller

Invasive breast cancer cells have the ability to extend membrane protrusions, invadopodia, into the extracellular matrix (ECM). These structures are associated with sites of active matrix degradation. The amount of matrix degradation associated with the activity of these membrane protrusions has been shown to directly correlate with invasive potential. We demonstrate here that microinjection of polyclonal anti-cortactin antibodies blocks matrix degradation at invadopodia supporting the hypothesis that cortactin has a direct role in invasive behavior. MDA-MB-231, invasive breast cancer cells were sheared from the surface of a gelatin matrix to isolate invadopodia. Cortactin, paxillin and protein kinase C (PKC) μ, a serine kinase, were co-immunoprecipitated as a complex from invadopodia-enriched membranes. We confirmed the subcellular distribution of these proteins by immunolocalization and Western blotting. We also determined that, in contrast to its presence in invasive cells, this complex of proteins was not detected in lysates from non-invasive cells that do not form invadopodia. Taken together, these data suggest that the formation of this cortactin-containing complex correlates with cellular invasiveness. We hypothesize that this complex of molecules has a role in the formation and function of invadopodia during cellular invasion.


Nature | 2000

The Syk tyrosine kinase suppresses malignant growth of human breast cancercells

Peter Coopman; Michael Tri H. Do; Mara Barth; Emma T. Bowden; Andrew J. Hayes; Eugenia Basyuk; Jan Blancato; Phyllis R. Vezza; Sandra W. McLeskey; Paul Mangeat; Susette C. Mueller

Syk is a protein tyrosine kinase that is widely expressed in haematopoietic cells. It is involved in coupling activated immunoreceptors to downstream signalling events that mediate diverse cellular responses including proliferation, differentiation and phagocytosis. Syk expression has been reported in cell lines of epithelial origin, but its function in these cells remains unknown. Here we show that Syk is commonly expressed in normal human breast tissue, benign breast lesions and low-tumorigenic breast cancer cell lines. Syk messenger RNA and protein, however, are low or undetectable in invasive breast carcinoma tissue and cell lines. Transfection of wild-type Syk into a Syk-negative breast cancer cell line markedly inhibited its tumour growth and metastasis formation in athymic mice. Conversely, overexpression of a kinase-deficient Syk in a Syk-positive breast cancer cell line significantly increased its tumour incidence and growth. Suppression of tumour growth by the reintroduction of Syk appeared to be the result of aberrant mitosis and cytokinesis. We propose that Syk is a potent modulator of epithelial cell growth and a potential tumour suppressor in human breast carcinomas.


Cancer Research | 2011

DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy In Vivo

Richard C.A. Sainson; Chern Ein Oon; Helen Turley; Russell Leek; Helen Sheldon; Esther Bridges; Wen Shi; Cameron Snell; Emma T. Bowden; Herren Wu; Partha S. Chowdhury; Angela J. Russell; Craig P. Montgomery; Richard Poulsom; Adrian L. Harris

Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.


Cancer Research | 2006

E6AP Mediates Regulated Proteasomal Degradation of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 in Immortalized Cells

Aparna Mani; Annabell S. Oh; Emma T. Bowden; Tyler Lahusen; Kevin L. Lorick; Allan M. Weissman; Richard Schlegel; Anton Wellstein; Anna T. Riegel

The steroid receptor coactivator oncogene, amplified in breast cancer 1 (AIB1; also known as ACTR/RAC-3/TRAM-1/SRC-3/p/CIP), is amplified and overexpressed in a variety of epithelial tumors. AIB1 has been reported to have roles in both steroid-dependent and steroid-independent transcription during tumor progression. In this report, we describe that the cellular levels of AIB1 are controlled through regulated proteasomal degradation. We found that serum withdrawal or growth in high cell density caused rapid degradation of AIB1 protein, but not mRNA, in immortalized cell lines. Proteasome inhibitors prevented this process, and high molecular weight ubiquitylated species of AIB1 were detected. Nuclear export was required for proteasomal degradation of AIB1 and involved the ubiquitin ligase, E6AP. AIB1/E6AP complexes were detected in cellular extracts, and reduction of cellular E6AP levels with E6AP short interfering RNA prevented proteasomal degradation of AIB1. Conversely, overexpression of E6AP promoted AIB1 degradation. The COOH terminus of AIB1 interacted with E6AP in vitro and deletion of this region in AIB1 rendered it resistant to degradation in cells. From our results, we propose a model whereby signals promoted by changes in the cellular milieu initiate E6AP-mediated proteasomal degradation of AIB1 and thus contribute to the control of steady-state levels of this protein.


Journal of Biological Chemistry | 2006

Identification of the fibroblast growth factor (FGF)-interacting domain in a secreted FGF-binding protein by phage display

Bin Xie; E. Tassi; Matthew R. Swift; Kevin McDonnell; Emma T. Bowden; Shaomeng Wang; Yumi Ueda; York Tomita; Anna T. Riegel; Anton Wellstein

Fibroblast growth factor-binding proteins (FGF-BP) are secreted carrier proteins that release fibroblast growth factors (FGFs) from the extracellular matrix storage and thus enhance FGF activity. Here we have mapped the interaction domain between human FGF-BP1 and FGF-2. For this, we generated T7 phage display libraries of N-terminally and C-terminally truncated FGF-BP1 fragments that were then panned against immobilized FGF-2. From this panning, a C-terminal fragment of FGF-BP1 (amino acids 193-234) was identified as the minimum binding domain for FGF. As a recombinant protein, this C-terminal fragment binds to FGF-2 and enhances FGF-2-induced signaling in NIH-3T3 fibroblasts and GM7373 endothelial cells, as well as mitogenesis and chemotaxis of NIH-3T3 cells. The FGF interaction domain in FGF-BP1 is distinct from the heparin-binding domain (amino acids 110-143), and homology modeling supports the notion of a distinct domain in the C terminus that is conserved across different species. This domain also contains conserved positioning of cysteine residues with the Cys-214/Cys-222 positions in the human protein predicted to participate in disulfide bridge formation. Phage display of a C214A mutation of FGF-BP1 reduced binding to FGF-2, indicating the functional significance of this disulfide bond. We concluded that the FGF interaction domain is contained in the C terminus of FGF-BP1.


Cancer Research | 2006

Expression of a fibroblast growth factor-binding protein during the development of adenocarcinoma of the pancreas and colon

E. Tassi; Ralf T. Henke; Emma T. Bowden; Matthew R. Swift; David P. Kodack; Angera H. Kuo; Anirban Maitra; Anton Wellstein

The activity of growth factors is crucial for tumor progression. We previously characterized a secreted fibroblast growth factor-binding protein (FGF-BP1) as a chaperone molecule, which enhances the biological functions of FGFs by releasing FGFs from the extracellular matrix. Here, we characterize the frequency and pattern of FGF-BP1 expression during the malignant progression of pancreas and colorectal carcinoma. For this, we generated monoclonal antibodies that detect FGF-BP1 protein in formalin-fixed, paraffin-embedded tissues and applied in situ hybridization to detect FGF-BP1 mRNA in adjacent tissue sections. FGF-BP1 protein and mRNA were found up-regulated (>70% positive) in parallel (r = 0.70, P < 0.0001) in colon adenoma (n = 9) as well as primary (n = 46) and metastatic (n = 71) colorectal cancers relative to normal colon epithelia (all P < 0.0001, versus normal). Similarly, pancreatitis (n = 17), pancreatic intraepithelial neoplasia (n = 80), and pancreatic adenocarcinoma (n = 67) showed a significant up-regulation of FGF-BP1 compared with normal pancreas (n = 42; all P < 0.0001, relative to normal). Furthermore, the biological activity of FGF-BP1 is neutralized by one of the antibodies, suggesting the potential for antibody-based therapeutic targeting. We propose that the up-regulation of the secreted FGF-BP1 protein during initiation of pancreas and colon neoplasia could make this protein a possible serum marker indicating the presence of high-risk premalignant lesions.


Laboratory Investigation | 2005

Vascular leakage in chick embryos after expression of a secreted binding protein for fibroblast growth factors.

Kevin McDonnell; Emma T. Bowden; Rafael Cabal-Manzano; Becky Hoxter; Anna T. Riegel; Anton Wellstein

Fibroblast growth factors (FGFs) have been implicated in a variety of physiologic and pathologic processes from embryonic development to tumor growth and angiogenesis. FGFs are immobilized in the extracellular matrix of different tissues and require release from this storage site to trigger a response. Secreted FGF-binding proteins (FGF-BPs) can release immobilized FGFs, enhance the activity of locally stored FGFs and can thus serve as an angiogenic switch molecule in cancer. Here, we report on the effect of human FGF-BP transgene expression in chicken embryos. To establish the transgenic model, plasmid-based reporter vectors expressing luciferase, β-galactosidase or green fluorescent protein were introduced through different routes into 4- to 5-day-old embryos grown outside their egg shell on top of the yolk sac. This allows for easy manipulation and continuous observation of phenotypic effects. Expression of human FGF-BP induced dose-dependent vascular permeability, hemorrhage and embryonic lethality. Light and electron microscopic studies indicate that this hemorrhage results from compromised microvascular structure. An FGF-1 expression vector with an added secretory signal mimicked this vascular leakiness phenotype whereas wild-type FGF-1 required coexpression of a threshold amount of FGF-BP. This model is a powerful tool for real-time monitoring of the effects of transient transgene expression during embryogenesis.


Cancer Research | 2013

Abstract 2897: Discovery and characterization of driver MAPK and PI3K pathway mutations in tumors and association with drug response in cell lines.

Mark Tomilo; Paul D. Williams; Emma T. Bowden; Supra R. Gajjala; Santhoshi Bandla; Sean F. Eddy; Seth Sadis; Peter Wyngaard; Nickolay A. Khazanov; Daniel R. Rhodes

Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC The MAPK and PI3K pathways are frequently altered in human cancer and are targeted by dozens of agents in clinical trials. The successful application of these therapies, alone or in combination, may depend on the activation status of both pathways. Next-generation sequencing of cancer exomes provides a unique opportunity to systematically survey pathway alterations in cancer. Using somatic mutation data obtained from The Cancer Genome Atlas, we sought to catalog the members of the MAPK and PI3K pathways with driver mutations, the frequency of occurrence in common cancers and the frequency of co-occurrence. Furthermore, we sought to characterize the association of pathway mutation status with drug response in pre-clinical models. While the MAPK and PI3K pathways were frequently altered, the frequency of single and dual pathway alteration and the altered genes varied substantially across cancer types. The MAPK pathway was most frequently altered in rectal (62%), colon (59%), uterine (31%) and lung adenocarcinoma (45%) but infrequently altered in and breast cancer (4%). KRAS, BRAF and NRAS hotspot mutations were the most common pathway drivers, along with NF1 deleterious mutations in certain cancer types. The PI3K pathway was most frequently altered in uterine (84%), breast (40%) and glioblastoma (41%) but was rarely altered in lung adenocarcinoma (9%). Hotspot mutations in PIK3CA and hotspot and deleterious mutations in PTEN were the most common pathway alterations. In addition, predicted driver mutations occurred in PIK3R1, PIK3R3, MTOR, AKT1 and AKT3. Notably, MAPK and PI3K pathway alterations co-occurred in uterine (30%), colon (17%) and gastric (12%) cancers more so than would be expected by chance (p < 0.02). In contrast, other cancer types favored one pathway almost exclusively and thus had little co-occurrence. For example, breast cancer significantly favored PI3K pathway whereas lung adenocarcinoma favored MAPK pathway. To assess the effect of pathway mutation status on treatment response, we integrated hybrid-capture sequencing data from the Cancer Cell Line Encyclopedia with pharmacological data from over 150 compounds. We found that MAPK and PI3K pathway mutations most significantly associated with sensitivity to MEK and PI3K/AKT/mTOR inhibitors, respectively. Notably though, cell lines with co-occurring MAPK pathway and PIK3CA mutations were insensitive to MEK inhibitors and cell lines with co-occurring PI3K pathway and KRAS mutations were insensitive to PI3K inhibitors. Also, not all pathway mutations conferred equal sensitivity. For example, BRAF mutants were generally sensitive, KRAS mutants were mixed and NF1 mutants were generally insensitive to MEK inhibitors. Taken together, our work highlights the need to consider pathways and co-occurrence in the development of targeted therapies. Citation Format: Mark Tomilo, Paul D. Williams, Emma T. Bowden, Supra R. Gajjala, Santhoshi Bandla, Sean F. Eddy, Seth E. Sadis, Peter J. Wyngaard, Nickolay A. Khazanov, Daniel R. Rhodes. Discovery and characterization of driver MAPK and PI3K pathway mutations in tumors and association with drug response in cell lines. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2897. doi:10.1158/1538-7445.AM2013-2897


Methods of Molecular Biology | 2004

Tetracycline-Regulated Expression of Hammerhead Ribozymes In Vivo

Emma T. Bowden; Anna T. Riegel

A major obstacle to achieving constitutive ribozyme expression in cells is that expression or elimination of the target gene may provide either a growth advantage or disadvantage to the cells that express ribozyme. Many approaches have been used to overcome this problem, mostly based on the effort to create conditional or inducible expression systems. In this chapter, we describe the most common choice for overcoming this problem, tetracycline-regulated ribozyme expression. This system consists of two central components: transcriptional transactivators that interact specifically with bacterial cis-regulatory elements and antibiotics that can modulate the binding of the transactivators at low and nontoxic doses. Here, we summarize protocols to generate cell lines expressing tetracycline-regulated ribozyme constructs.


Journal of Biological Chemistry | 2002

Midkine Binds to Anaplastic Lymphoma Kinase (ALK) and Acts as a Growth Factor for Different Cell Types

Gerald E. Stoica; Angera Kuo; Ciaran Powers; Emma T. Bowden; Elaine Buchert Sale; Anna T. Riegel; Anton Wellstein

Collaboration


Dive into the Emma T. Bowden's collaboration.

Top Co-Authors

Avatar

Anton Wellstein

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Tassi

Georgetown University

View shared research outputs
Researchain Logo
Decentralizing Knowledge