Emma Thomson
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emma Thomson.
Journal of Cell Science | 2013
Emma Thomson; Sébastien Ferreira-Cerca; Ed Hurt
Summary Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.
Molecular and Cellular Biology | 2010
Emma Thomson; David Tollervey
ABSTRACT The 18S rRNA component of yeast (Saccharomyces cerevisiae) 40S ribosomes undergoes cytoplasmic 3′ cleavage following nuclear export, whereas exported pre-60S subunits were believed to contain only mature 5.8S and 25S rRNAs. However, in situ hybridization detected 3′-extended forms of 5.8S rRNA in the cytoplasm, which were lost when Crm1-dependent preribosome export was blocked by treatment with leptomycin B (LMB). LMB treatment rapidly blocked processing of 6S pre-rRNA to 5.8S rRNA, leading to TRAMP-dependent pre-rRNA degradation. The 6S pre-rRNA was coprecipitated with the 60S export adapter Nmd3 and cytoplasmic 60S synthesis factor Lsg1. The longer 5.8S+30 pre-rRNA (a form of 5.8S rRNA 3′ extended by ∼30 nucleotides) is processed to 6S by the nuclear exonuclease Rrp6, and nuclear pre-rRNA accumulated in the absence of Rrp6. In contrast, 6S to 5.8S processing requires the cytoplasmic exonuclease Ngl2, and cytoplasmic pre-rRNA accumulated in strains lacking Ngl2. We conclude that nuclear pre-60S particles containing the 6S pre-rRNA bind Nmd3 and Crm1 and are exported to the cytoplasm prior to final maturation by Ngl2.
Journal of Neurochemistry | 2004
Nikhat F. Zaidi; Emma Thomson; Eun-Kyoung Choi; Joseph D. Buxbaum; Wilma Wasco
Calsenilin, which was originally identified as a presenilin interacting protein, has since been shown to be involved in the processing of presenilin(s), the modulation of amyloid β‐peptide (Aβ) levels and apoptosis. Subsequent to its original identification, calsenilin was shown to act as a downstream regulatory element antagonist modulator (and termed DREAM), as well as to interact with and modulate A‐type potassium channels (and termed KChIP3). Calsenilin is primarily a cytoplasmic protein that must translocate to the nucleus to perform its function as a transcriptional repressor. This study was designed to determine the cellular events that modulate the translocation of calsenilin from the cytoplasm to the nucleus. The nuclear translocation of calsenilin was found to be enhanced following serum deprivation. A similar effect was observed when cells were treated with pharmacological agents that directly manipulate the levels of intracellular calcium (caffeine and the calcium ionophore A23187), suggesting that the increased levels of calsenilin in the nucleus are mediated by changes in intracellular calcium. A calsenilin mutant that was incapable of binding calcium retained the ability to translocate to the nucleus. Taken together, these findings indicate that the level of intracellular calcium can modulate the nuclear translocation of calsenilin and that this process does not involve the direct binding of calcium to calsenilin.
Nucleic Acids Research | 2014
Sébastien Ferreira-Cerca; Irene Kiburu; Emma Thomson; Nicole A. LaRonde; Ed Hurt
During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1–ATP–Mg2+ complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1s catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.
Molecular and Cellular Biology | 2012
Jochen Bassler; Isabella Klein; C. Schmidt; Martina Kallas; Emma Thomson; M. A. Wagner; Bettina Bradatsch; Gerald N. Rechberger; H. Strohmaier; Ed Hurt; Helmut Bergler
ABSTRACT The nuclear export of the preribosomal 60S (pre-60S) subunit is coordinated with late steps in ribosome assembly. Here, we show that Bud20, a conserved C2H2-type zinc finger protein, is an unrecognized shuttling factor required for the efficient export of pre-60S subunits. Bud20 associates with late pre-60S particles in the nucleoplasm and accompanies them into the cytoplasm, where it is released through the action of the Drg1 AAA-ATPase. Cytoplasmic Bud20 is then reimported via a Kap123-dependent pathway. The deletion of Bud20 induces a strong pre-60S export defect and causes synthetic lethality when combined with mutant alleles of known pre-60S subunit export factors. The function of Bud20 in ribosome export depends on a short conserved N-terminal sequence, as we observed that mutations or the deletion of this motif impaired 60S subunit export and generated the genetic link to other pre-60S export factors. We suggest that the shuttling Bud20 is recruited to the nascent 60S subunit via its central zinc finger rRNA binding domain to facilitate the subsequent nuclear export of the preribosome employing its N-terminal extension.
Protein Science | 2017
Jochen Baßler; Yasar Luqman Ahmed; Martina Kallas; Markus Kornprobst; Fabiola R. Calviño; Marén Gnädig; Matthias Thoms; Gunter Stier; Sherif Ismail; Satyavati Kharde; Nestor Castillo; Sabine Griesel; Sonja Bastuck; Bettina Bradatsch; Emma Thomson; Dirk Flemming; Irmgard Sinning; Ed Hurt
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre‐ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre‐ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in‐depth analysis of their protein–protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2‐hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein–protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre‐ribosome factors forming the ctUTP‐A and ctUTP‐B modules, and the Brix‐domain containing assembly factors of the pre‐60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.
Nucleic Acids Research | 2016
Rizos-Georgios Manikas; Emma Thomson; Matthias Thoms; Ed Hurt
Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA–protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms.
Cell | 2015
Matthias Thoms; Emma Thomson; Jochen Baßler; Marén Gnädig; Sabine Griesel; Ed Hurt
RNA | 2007
Emma Thomson; Juri Rappsilber; David Tollervey
Proceedings of the National Academy of Sciences of the United States of America | 2013
Thomas Monecke; David Haselbach; Béla Voß; Andreas Russek; Piotr Neumann; Emma Thomson; Ed Hurt; Ulrich Zachariae; Holger Stark; Helmut Grubmüller; Achim Dickmanns; Ralf Ficner