Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanouel A. Varvarigos is active.

Publication


Featured researches published by Emmanouel A. Varvarigos.


Journal of Lightwave Technology | 2011

Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks

Konstantinos Christodoulopoulos; Ioannis Tomkos; Emmanouel A. Varvarigos

Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where we are given a traffic matrix that includes the requested transmission rates of the connections to be served. Connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level, taking into account the transmission distance. We introduce the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, prove that is also NP-complete and present various algorithms to solve it. We start by presenting an optimal ILP RMLSA algorithm that minimizes the spectrum used to serve the traffic matrix, and also present a decomposition method that breaks RMLSA into its two substituent subproblems, namely 1) routing and modulation level and 2) spectrum allocation (RML+SA), and solves them sequentially. We also propose a heuristic algorithm that serves connections one-by-one and use it to solve the planning problem by sequentially serving all the connections in the traffic matrix. In the sequential algorithm, we investigate two policies for defining the order in which connections are considered. We also use a simulated annealing meta-heuristic to obtain even better orderings. We examine the performance of the proposed algorithms through simulation experiments and evaluate the spectrum utilization benefits that can be obtained by utilizing OFDM elastic bandwidth allocation, when compared to a traditional WDM network.


global communications conference | 2010

Routing and Spectrum Allocation in OFDM-Based Optical Networks with Elastic Bandwidth Allocation

Kostas Christodoulopoulos; Ioannis Tomkos; Emmanouel A. Varvarigos

Orthogonal Frequency Division Multiplexing (OFDM) has been recently proposed as a modulation technique for optical networks, due to its good spectral efficiency and impairment tolerance. Optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions. We consider the planning problem of an OFDM-based optical network where we are given a traffic matrix that includes the requested transmission rates of the connections to be served. Connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers. We introduce the Routing and Spectrum Allocation (RSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, and present various algorithms to solve the RSA. We start by presenting an optimal ILP RSA algorithm that minimizes the spectrum used to serve the traffic matrix, and also present a decomposition method that breaks RSA into two substituent subproblems, namely, (i) routing and (ii) spectrum allocation (R+SA) and solves them sequentially. We also propose a heuristic algorithm that serves connections one-by-one and use it to solve the planning problem by sequentially serving all traffic matrix connections. To feed the sequential algorithm, two ordering policies are proposed; a simulated annealing meta-heuristic is also used to obtain even better orderings. Our results indicate that the proposed sequential heuristic with appropriate ordering yields close to optimal solutions in low running times.


IEEE Communications Magazine | 2004

Performance engineering of metropolitan area optical networks through impairment constraint routing

Ioannis Tomkos; Dimitrios Vogiatzis; Carmen Mas; Ioannis Zacharopoulos; Anna Tzanakaki; Emmanouel A. Varvarigos

We demonstrate the use of impairment constraint routing for performance engineering of transparent metropolitan area optical networks. Our results show the relationship between blocking probability and different network characteristics such as span length, amplifier noise figure, and bit rate, and provide information on the system specifications required to achieve acceptable network performance.


IEEE Transactions on Parallel and Distributed Systems | 2007

Fair Scheduling Algorithms in Grids

Nikolaos D. Doulamis; Anastasios D. Doulamis; Emmanouel A. Varvarigos; Theodora A. Varvarigou

In this paper, we propose a new algorithm for fair scheduling, and we compare it to other scheduling schemes such as the earliest deadline first (EDF) and the first come first served (FCFS) schemes. Our algorithm uses a max-min fair sharing approach for providing fair access to users. When there is no shortage of resources, the algorithm assigns to each task enough computational power for it to finish within its deadline. When there is congestion, the main idea is to fairly reduce the CPU rates assigned to the tasks so that the share of resources that each user gets is proportional to the users weight. The weight of a user may be defined as the users contribution to the infrastructure or the price he is willing to pay for services or any other socioeconomic consideration. In our algorithms, all tasks whose requirements are lower than their fair share CPU rate are served at their demanded CPU rates. However, the CPU rates of tasks whose requirements are larger than their fair share CPU rate are reduced to fit the total available computational capacity in a fair manner. Three different versions of fair scheduling are adopted in this paper: the simple fair task order (SFTO), which schedules the tasks according to their respective fair completion times, the adjusted fair task order (AFTO), which refines the SFTO policy by ordering the tasks using the adjusted fair completion time, and the max-min fair share (MMFS) scheduling policy, which simultaneously addresses the problem of finding a fair task order and assigning a processor to each task based on a max-min fair sharing policy. Experimental results and comparisons with traditional scheduling schemes such as the EDF and the FCFS are presented using three different error criteria. Validation of the simulations using real experiments of tasks generated from 3D image- rendering processes is also provided. The three proposed scheduling schemes can be integrated into existing grid computing architectures.


Journal of Lightwave Technology | 2011

Experimental Demonstration of an Impairment Aware Network Planning and Operation Tool for Transparent/Translucent Optical Networks

Siamak Azodolmolky; Jordi Perelló; Marianna Angelou; Fernando Agraz; Luis Velasco; Salvatore Spadaro; Yvan Pointurier; Antonio Francescon; Chava Vijaya Saradhi; Panagiotis C. Kokkinos; Emmanouel A. Varvarigos; Sawsan Al Zahr; Maurice Gagnaire; Matthias Gunkel; Dimitrios Klonidis; Ioannis Tomkos

Core optical networks using reconfigurable optical switches and tunable lasers appear to be on the road towards widespread deployment and could evolve to all-optical mesh networks in the coming future. Considering the impact of physical layer impairments in the planning and operation of all-optical (and translucent) networks is the main focus of the Dynamic Impairment Constraint Optical Networking (DICONET) project. The impairment aware network planning and operation tool (NPOT) is the main outcome of DICONET project, which is explained in detail in this paper. The key building blocks of the NPOT, consisting of network description repositories, the physical layer performance evaluator, the impairment aware routing and wavelength assignment engines, the component placement modules, failure handling, and the integration of NPOT in the control plane are the main contributions of this study. Besides, the experimental result of DICONET proposal for centralized and distributed control plane integration schemes and the performance of the failure handling in terms of restoration time is presented in this study.


IEEE ACM Transactions on Networking | 2010

Offline routing and wavelength assignment in transparent WDM networks

Konstantinos Christodoulopoulos; Konstantinos Manousakis; Emmanouel A. Varvarigos

We consider the offline version of the routing and wavelength assignment (RWA) problem in transparent all-optical networks. In such networks and in the absence of regenerators, the signal quality of transmission degrades due to physical layer impairments. Because of certain physical effects, routing choices made for one lightpath affect and are affected by the choices made for the other lightpaths. This interference among the lightpaths is particularly difficult to formulate in an offline algorithm since, in this version of the problem, we start without any established connections and the utilization of lightpaths are the variables of the problem. We initially present an algorithm for solving the pure (without impairments) RWA problem based on a LP-relaxation formulation that tends to yield integer solutions. Then, we extend this algorithm and present two impairment-aware (IA) RWA algorithms that account for the interference among lightpaths in their formulation. The first algorithm takes the physical layer indirectly into account by limiting the impairment-generating sources. The second algorithm uses noise variance-related parameters to directly account for the most important physical impairments. The objective of the resulting cross-layer optimization problem is not only to serve the connections using a small number of wavelengths (network layer objective), but also to select lightpaths that have acceptable quality of transmission (physical layer objective). Simulations experiments using realistic network, physical layer, and traffic parameters indicate that the proposed algorithms can solve real problems within acceptable time.


IEEE\/OSA Journal of Optical Communications and Networking | 2012

Quantifying spectrum, cost, and energy efficiency in fixed-grid and flex-grid networks [Invited]

Eleni Palkopoulou; Marianna Angelou; Dimitrios Klonidis; Kostas Christodoulopoulos; Axel Klekamp; Fred Buchali; Emmanouel A. Varvarigos; Ioannis Tomkos

Single and multi-carrier networks offering channel rates up to 400 Gb/s are evaluated under realistic reach parameters. It is found that efficient spectrum utilization and fine bit-rate granularity are essential to achieve cost and energy efficiency. Additionally, the break-even cost of flexible orthogonal frequency division multiplexing transponders is examined under different settings. The break-even cost of a flexible transponder corresponds to the cost value for which the total cost of the network is equal to that of the related single-line-rate network. The impact of the traffic load, the additional cost required for flex-grid optical cross connects, the cost of spectrum, as well as the cost of fixed-grid transponders is examined.


european conference on optical communication | 2010

Spectrally/bitrate flexible optical network planning

Konstantinos Christodoulopoulos; Ioannis Tomkos; Emmanouel A. Varvarigos

We consider the Routing and Spectrum Allocation (RSA) problem in an OFDM-based optical network with elastic bandwidth allocation. We asses the spectrum utilization gains of this flexible architecture compared to a traditional fixed-grid rigid-bandwidth WDM network.


Journal of Lightwave Technology | 2009

Offline Impairment-Aware Routing and Wavelength Assignment Algorithms in Translucent WDM Optical Networks

Konstantinos Manousakis; Konstantinos Christodoulopoulos; Euaggelos Kamitsas; Ioannis Tomkos; Emmanouel A. Varvarigos

Physical impairments in optical fiber transmission necessitate the use of regeneration at certain intermediate nodes, at least for certain lengthy lightpaths. We design and implement impairment-aware algorithms for routing and wavelength assignment (IA-RWA) in translucent optical networks. We focus on the offline version of the problem, where we are given a network topology, the number of available wavelengths and a traffic matrix. The proposed algorithm selects the 3R regeneration sites and the number of regenerators that need to be deployed on these sites, solving the regenerator placement problem for the given set of requested connections. The problem can be also posed in a slightly different setting, where a (sparse) placement of regenerators in the network is given as input and the algorithm selects which of the available regenerators to use, solving the regenerator assignment problem. We formulate the problem of regenerator placement and regenerator assignment, as a virtual topology design problem, and address it using various algorithms, ranging from a series of integer linear programming (ILP) formulations to simple greedy heuristic algorithms. Once the sequence of regenerators to be used by the non-transparent connections has been determined, we transform the initial traffic matrix by replacing non-transparent connections with a sequence of transparent connections that terminate and begin at the specified 3R intermediate nodes. Using the transformed matrix we then apply an IA-RWA algorithm designed for transparent (as opposed to translucent) networks to route the traffic. Blocked connections are re-routed using any remaining regenerator(s) in the last phase of the algorithm.


IEEE Journal on Selected Areas in Communications | 2013

Time-Varying Spectrum Allocation Policies and Blocking Analysis in Flexible Optical Networks

Konstantinos Christodoulopoulos; Ioannis Tomkos; Emmanouel A. Varvarigos

We consider the problem of serving traffic in a spectrum-flexible optical network, where the spectrum allocated to an end-to-end connection can change so as to adapt to the time-varying required transmission rate. In the proposed framework, each connection is assigned a route and is allocated a reference frequency over that route, using an appropriate Routing and Spectrum Allocation (RSA) algorithm, but the spectrum it utilizes around the reference frequency is allowed to expand and contract to match source rate fluctuations. We propose and analyze three spectrum expansion/contraction (SEC) policies for modifying the spectrum allocated to each connection. The first policy, named the Constant Spectrum Allocation (CSA) policy, allocates a number of spectrum slots for exclusive use by each connection. We also present two policies that enable the dynamic sharing of spectrum slots among connections, named the Dynamic High Expansion-Low Contraction (DHL) and the Dynamic Alternate Direction (DAD) policy. We give exact formulas for calculating the blocking probability for a connection and for the whole network under the CSA policy and provide corresponding approximate analyses under the DHL and DAD policies. We also present a simple iterative RSA algorithm that uses the developed blocking models so as to minimize the average blocking of the network.

Collaboration


Dive into the Emmanouel A. Varvarigos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgios I. Papadimitriou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianna Angelou

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge