Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel A. Ho is active.

Publication


Featured researches published by Emmanuel A. Ho.


Journal of Controlled Release | 2013

Advancements in the field of intravaginal siRNA delivery

Sidi Yang; Yufei Chen; Roien Ahmadie; Emmanuel A. Ho

The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.


Journal of Pharmaceutical Sciences | 2010

Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties

Emmanuel A. Ho; Euan Ramsay; Mihaela Ginj; Malathi Anantha; Isaiah Bregman; Jonathan Sy; Janet Woo; Maryam Osooly-Talesh; Donald Yapp; Marcel B. Bally

Cationic liposomes exhibit a propensity to selectively target tumor-associated blood vessels demonstrating potential value as anti-cancer drug delivery vehicles. Their utility however, is hampered by their biological instability and rapid elimination following i.v. administration. Efforts to circumvent rapid plasma elimination have, to date, focused on decreasing cationic lipid content and incorporating polyethylene glycol (PEG)-modified lipids. In this study we wanted to determine whether highly charged cationic liposomes with surface-associated PEG could be designed to exhibit extended circulation lifetimes, while retaining tumor vascular targeting properties in an HT29 colorectal cancer xenograft model. Cationic liposomes prepared of DSPC, cationic lipids (DODAC, DOTAP, or DC-CHOL), and DSPE-PEG(2000) were studied. Our results demonstrate that formulations prepared with 50 mol% DODAC or DC-CHOL, and 20 mol% DSPE-PEG(2000) exhibited circulation half-lives ranging from 6.5 to 12.5 h. Biodistribution studies demonstrated that DC-CHOL formulations prepared with DSPE-PEG(2000) accumulated threefold higher in s.c. HT29 tumors than its PEG-free counterpart. Fluorescence microscopy studies suggested that the presence of DSPE-PEG(2000) did not adversely affect liposomal tumor vasculature targeting. We show for the first time that it is achievable to design highly charged, highly pegylated (20 mol% DSPE-PEG(2000)) cationic liposomes which exhibit both extended circulation lifetimes and tumor vascular targeting properties.


International Journal of Nanomedicine | 2013

Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells.

Sidi Yang; Yufei Chen; Kaien Gu; Alicia Dash; Casey L. Sayre; Neal M. Davies; Emmanuel A. Ho

The goal of this study was to develop and characterize an intravaginal nanomedicine for the active targeted delivery of saquinavir (SQV) to CD4+ immune cells as a potential strategy to prevent or reduce HIV infection. The nanomedicine was formulated into a vaginal gel to provide ease in self-administration and to enhance retention within the vaginal tract. SQV-encapsulated nanoparticles (SQV-NPs) were prepared from poly(lactic-co-glycolic acid) (PLGA) and conjugated to antihuman anti-CD4 antibody. Antibody-conjugated SQV-NPs (Ab-SQV-NPs) had an encapsulation efficiency (EE%) of 74.4% + 3.7% and an antibody conjugation efficiency (ACE%) of 80.95% + 1.10%. Over 50% of total loaded SQV was released from NPs over 3 days. NPs were rapidly taken up by Sup-T1 cells, with more than a twofold increase in the intracellular levels of SQV when delivered by Ab-SQV-NPs in comparison to controls 1 hour post-treatment. No cytotoxicity was observed when vaginal epithelial cells were treated for 24 hours with drug-free Ab-NPs (1,000 μg/mL), 1% HEC placebo gel (200 mg/mL), or 1% HEC gel loaded with drug-free Ab-NPs (5 mg NPs/g gel, 200 mg/mL of gel mixture). Overall, we described an intravaginal nanomedicine that is nontoxic and can specifically deliver SQV into CD4+ immune cells. This platform may demonstrate potential utility in its application as postexposure prophylaxis for the treatment or reduction of HIV infection, but further studies are required.


Molecular Pharmaceutics | 2015

Biodegradable Film for the Targeted Delivery of siRNA-Loaded Nanoparticles to Vaginal Immune Cells

Jijin Gu; Sidi Yang; Emmanuel A. Ho

The goal of this study was to develop and characterize a novel intravaginal film platform for targeted delivery of small interfering RNA (siRNA)-loaded nanoparticles (NP) to dendritic cells as a potential gene therapy for the prevention of sexually transmitted human immunodeficiency virus (HIV) infection. Poly(ethylene glycol) (PEG)-functionalized poly(D, L-lactic-co-glycolic acid) (PLGA)/polyethylenimine (PEI)/siRNA NP (siRNA-NP) were fabricated using a modified emulsion-solvent evaporation method and characterized for particle size, zeta potential, encapsulation efficiency (EE), and siRNA release. siRNA-NP were decorated with anti-HLA-DR antibody (siRNA-NP-Ab) for targeting delivery to HLA-DR+ dendritic cells (DCs) and homogeneously dispersed in a biodegradable film consisting of poly vinyl alcohol (PVA) and λ-carrageenan. The siRNA-NP-Ab-loaded film (siRNA-NP-Ab-film) was transparent, displayed suitable physicomechanical properties, and was noncytotoxic. Targeting activity was evaluated in a mucosal coculture model consisting of a vaginal epithelial monolayer (VK2/E6E7 cells) and differentiated KG-1 cells (HLA-DR+ DCs). siRNA-NP-Ab were rapidly released from the film and were able to penetrate the epithelial layer to be taken up by differentiated KG-1 cells. siRNA-NP-Ab demonstrated higher targeting activity and significantly higher knockdown of synaptosome-associated 23-kDa protein (SNAP-23) mRNA and protein when compared to siRNA-NP without antibody conjugation. Overall, these data suggest that our novel siRNA-NP-Ab-film may be a promising platform for preventing HIV infection within the female genital tract.


Journal of Pharmaceutical Sciences | 2013

Characterization of Long-Circulating Cationic Nanoparticle Formulations Consisting of a Two-Stage PEGylation Step for the Delivery of siRNA in a Breast Cancer Tumor Model

Emmanuel A. Ho; Maryam Osooly; Dita Strutt; Dana Masin; Youngjoo Yang; Hong Yan; Marcel B. Bally

Polyethylene glycol (PEG) has been used widely in liposomal formulations as a strategy to inhibit opsonization by plasma proteins and to prolong liposome plasma circulation time. PEG can be incorporated onto the surface of liposomes either during the spontaneous self-assembling process or inserted after vesicle formation. The advantages of employing the PEG postinsertion method include improved drug encapsulation efficiency and the ability to incorporate PEG conjugates for enhanced cell binding and uptake. In this study, we propose to evaluate a cationic lipid nanoparticle formulation containing two PEGylation steps: pre- and post-siRNA insertion. Our results indicate that formulations consisting of the extra PEG post-insertion step significantly increased siRNA circulation in the plasma by two-folds in comparison with the formulations consisting of only the single PEGylation step. Moreover, this formulation was able to efficiently carry siRNA to the tumor site, increase siRNA stability and significantly downregulate luciferase mRNA expression by >50% when compared with the controls in an intraperitoneal and subcutaneous breast cancer tumor model. Overall, our cationic lipid nanoparticle formulation displayed enhanced plasma circulation, reduced liver accumulation, enhanced tumor targeting, and effective gene knockdown--demonstrating excellent utility for the delivery of siRNA.


Molecular Pharmaceutics | 2016

Nanoparticles Encapsulated with LL37 and Serpin A1 Promotes Wound Healing and Synergistically Enhances Antibacterial Activity

Miral Fumakia; Emmanuel A. Ho

Wound care is a serious healthcare concern, often complicated by prolonged inflammation and bacterial infection, which contributes significantly to mortality and morbidity. Agents commonly used to treat chronic wound infections are limited due to toxicity of the therapy, multifactorial etiology of chronic wounds, deep skin infections, lack of sustained controlled delivery of drugs, and development of drug resistance. LL37 is an endogenous host defense peptide possessing antimicrobial activity and is involved in the modulation of wound healing. Serpin A1 (A1) is an elastase inhibitor and has been shown to demonstrate wound-healing properties. Hence, our goal was to develop a topical combination nanomedicine for the controlled sustained delivery of LL37 and A1 at precise synergistic ratio combinations that will significantly promote wound closure, reduce bacterial contamination, and enhance anti-inflammatory activity. We have successfully developed the first solid lipid nanoparticle (SLN) formulation that can simultaneously deliver LL37 and A1 at specific ratios resulting in accelerated wound healing by promoting wound closure in BJ fibroblast cells and keratinocytes as well as synergistically enhancing antibacterial activity against S. aureus and E. coli in comparison to LL37 or A1 alone.


Reviews in Medical Virology | 2016

Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction.

Miral Fumakia; Sidi Yang; Jijin Gu; Emmanuel A. Ho

The failures of several first‐generation and second‐generation small molecule drug‐based anti‐HIV therapies in various stages of clinical trials are an indication that there is a need for a paradigm shift in the future designs of anti‐HIV therapeutics. Over the past several decades, various anti‐HIV drugs have been developed, among them, protein/peptide‐based therapies. From the first peptide discovered (SJ2176) to the first peptide approved by the Food and Drug Administration (DP178/T20/enfuvirtide/Fuzeon®), anti‐HIV proteins/peptides as fusion/entry inhibitors have been shown to provide potent effects and benefits. This review summarizes the past and current endeavors in this area, discusses the potential mechanisms of action for various anti‐HIV proteins/peptides, compares the advantages and disadvantages between the different proteins/peptides, and finally, examines the future direction of the field, specifically, strategies that will enhance the therapeutic efficacy of fusion/entry inhibitor‐based anti‐HIV proteins/peptides. Although there are numerous reviews highlighting the general field of entry/fusion inhibitors, there is a lack of literature focused on protein/peptide‐based entry/fusion inhibitors for HIV therapy, and as a result, this review is intended to fill this void by summarizing the past, current, and future development of these macromolecules. Copyright


Drug Design Development and Therapy | 2014

Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine

Yufei Chen; Yannick Leandre Traore; Amanda Li; Keith R. Fowke; Emmanuel A. Ho

Hydroxychloroquine (HCQ) has been shown to demonstrate anti-inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR) devices (a surfaced-modified matrix IVR and a reservoir segmental IVR) for achieving sustained delivery (>14 days) of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol) coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively). Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 μg/mL per day for IVRs loaded with aqueous HCQ and 32.23 μg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections.


Antimicrobial Agents and Chemotherapy | 2015

Impact of Hydroxychloroquine-Loaded Polyurethane Intravaginal Rings on Lactobacilli

Yannick Leandre Traore; Yufei Chen; Anne-Marie Bernier; Emmanuel A. Ho

ABSTRACT The use of polymeric devices for controlled sustained delivery of drugs is a promising approach for the prevention of HIV-1 infection. Unfortunately, certain microbicides, when topically applied vaginally, may be cytotoxic to vaginal epithelial cells and the protective microflora present within the female genital tract. In this study, we evaluated the impact of hydroxychloroquine (HCQ)-loaded, reservoir-type, polyurethane intravaginal rings (IVRs) on the growth of Lactobacillus crispatus and Lactobacillus jensenii and on the viability of vaginal and ectocervical epithelial cells. The IVRs were fabricated using hot-melt injection molding and were capable of providing controlled release of HCQ for 24 days, with mean daily release rates of 17.01 ± 3.6 μg/ml in sodium acetate buffer (pH 4) and 29.45 ± 4.84 μg/ml in MRS broth (pH 6.2). Drug-free IVRs and the released HCQ had no significant effects on bacterial growth or the viability of vaginal or ectocervical epithelial cells. Furthermore, there was no significant impact on the integrity of vaginal epithelial cell monolayers, in comparison with controls, as measured by transepithelial electrical resistance. Overall, this is the first study to evaluate the effects of HCQ-loaded IVRs on the growth of vaginal flora and the integrity of vaginal epithelial cell monolayers.


Pharmaceutics | 2017

Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

Júlia Novaes; Ryan Lillico; Casey L. Sayre; Kalyanam Nagabushanam; Muhammed Majeed; Yufei Chen; Emmanuel A. Ho; Ana Oliveira; Stephanie E. Martinez; Samaa Alrushaid; Neal M. Davies; Ted M. Lakowski

Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

Collaboration


Dive into the Emmanuel A. Ho's collaboration.

Top Co-Authors

Avatar

Yufei Chen

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Sidi Yang

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jijin Gu

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Seungil Kim

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Song Liu

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel B. Bally

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge