Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Bischoff is active.

Publication


Featured researches published by Emmanuel Bischoff.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 1999

5. Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and of infection complexity in two neighbouring Senegalese villages with different transmission conditions

Lassana Konaté; Joanna Zwetyenga; Christophe Rogier; Emmanuel Bischoff; Didier Fontenille; Adama Tall; André Spiegel; Jean-François Trape; Odile Mercereau-Puijalon

To investigate the impact of transmission on the development of immunity to malaria and on parasite diversity, longitudinal surveys have been conducted for several years in Dielmo and Ndiop, 2 neighbouring Senegalese villages with holo- and mesoendemic transmission conditions, respectively. We analysed Plasmodium falciparum msp1 block 2 and msp2 genotypes of isolates collected from 58% of the Dielmo villagers during the same week as those studied recently from Ndiop. Allele frequencies differed in both villages, indicating considerable microgeographical heterogeneity of parasite populations. The complexity of the infections, estimated using individual or combined msp1 and msp2 genotyping, in Dielmo was more than double that in Ndiop and it was age-dependent in Dielmo but not in Ndiop. Thus, this study confirmed the influence of age on the complexity of asymptomatic malaria infections in a holoendemic area. The age distribution of complexity in Dielmo substantiates the interpretation that the number of parasite types per isolate reflects acquired antiparasite immunity. This cross-sectional survey also confirms that the sickle cell trait has no impact on complexity but influences the distribution of P. falciparum genotypes.


Science | 2011

A Cryptic Subgroup of Anopheles gambiae Is Highly Susceptible to Human Malaria Parasites

Michelle M. Riehle; Wamdaogo M. Guelbeogo; Awa Gneme; Karin Eiglmeier; Inge Holm; Emmanuel Bischoff; Thierry Garnier; Gregory M. Snyder; Xuanzhong Li; Kyriacos Markianos; N'Fale Sagnon; Kenneth D. Vernick

Collecting mosquito larvae from West African ponds has revealed a previously unknown but highly abundant genotype. Population subgroups of the African malaria vector Anopheles gambiae have not been comprehensively characterized owing to the lack of unbiased sampling methods. In the arid savanna zone of West Africa, where potential oviposition sites are scarce, widespread collection from larval pools in the peridomestic human habitat yielded a comprehensive genetic survey of local A. gambiae population subgroups, independent of adult resting behavior and ecological preference. A previously unknown subgroup of exophilic A. gambiae is sympatric with the known endophilic A. gambiae in this region. The exophilic subgroup is abundant, lacks differentiation into M and S molecular forms, and is highly susceptible to infection with wild Plasmodium falciparum. These findings might have implications for the epidemiology of malaria transmission and control.


PLOS Pathogens | 2009

Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species

Christian Mitri; Jean Claude Jacques; Isabelle Thiery; Michelle M. Riehle; Jiannong Xu; Emmanuel Bischoff; Isabelle Morlais; Sandrine E. Nsango; Kenneth D. Vernick; Catherine Bourgouin

Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized.


Blood | 2012

A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages

Marta Tibúrcio; Makhtar Niang; Guillaume Deplaine; Sylvie Perrot; Emmanuel Bischoff; Papa Alioune Ndour; Francesco Silvestrini; Ayman Khattab; Geneviève Milon; Peter H. David; Max Hardeman; Kenneth D. Vernick; Robert W. Sauerwein; Peter Rainer Preiser; Odile Mercereau-Puijalon; Pierre Buffet; Pietro Alano; Catherine Lavazec

Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the peripheral blood, available to uptake by the Anopheles vector. Mechanisms underlying GIE sequestration and release in circulation are virtually unknown. We show here that mature GIEs are more deformable than immature stages using ektacytometry and microsphiltration methods, and that a switch in cellular deformability in the transition from immature to mature gametocytes is accompanied by the deassociation of parasite-derived STEVOR proteins from the infected erythrocyte membrane. We hypothesize that mechanical retention contributes to sequestration of immature GIEs and that regained deformability of mature gametocytes is associated with their release in the bloodstream and ability to circulate. These processes are proposed to play a key role in P falciparum gametocyte development in the host and to represent novel and unconventional targets for interfering with parasite transmission.


PLOS Pathogens | 2008

Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

Anthony Siau; Olivier Silvie; Jean-François Franetich; Samir Yalaoui; Carine Marinach; Laurent Hannoun; Geert-Jaan van Gemert; Adrian J. F. Luty; Emmanuel Bischoff; Peter H. David; Georges Snounou; Catherine Vaquero; Patrick Froissard; Dominique Mazier

Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota

Guillaume Carissimo; Emilie Pondeville; Melanie McFarlane; Isabelle Dietrich; Christian Mitri; Emmanuel Bischoff; Christophe Antoniewski; Catherine Bourgouin; Anna-Bella Failloux; Alain Kohl; Kenneth D. Vernick

Significance It is important to understand antiviral mechanisms in potential new arbovirus vectors, such as Anopheles mosquitoes, in order to assess risks associated with arbovirus spread. Using an arbovirus naturally transmitted by Anopheles, we find that important immune mechanisms involved in the first bottleneck to Anopheles infection, the midgut, have distinct effects on arbovirus or malaria. This result is, to our knowledge, the first concrete evidence of protection tradeoffs for different human pathogens in a human disease vector, and it suggests that design of genetically immune-modified mosquitoes could result in unexpected outcomes. These results also indicate that different mosquito tissues display distinct antiviral protection that probably imposes divergent selection pressures upon viral replication during different stages of the infection. Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o’nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.


BMC Genomics | 2010

In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum

Emmanuel Bischoff; Catherine Vaquero

BackgroundMalaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription.ResultsA comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed.ConclusionThis is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.


BMC Genomics | 2008

Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate

Onguma Natalang; Emmanuel Bischoff; Guillaume Deplaine; Caroline Proux; Marie-Agnès Dillies; Odile Sismeiro; Ghislaine Guigon; Serge Bonnefoy; Jintana Patarapotikul; Odile Mercereau-Puijalon; Jean Yves Coppée; Peter H. David

BackgroundTranslation of the genome sequence of Plasmodium sp. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of P. falciparum parasites exposed to antimalarial drugs.ResultsThe rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole.ConclusionThe high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.


Cellular Microbiology | 2009

LISP1 is important for the egress of Plasmodium berghei parasites from liver cells.

Tomoko Ishino; Bertrand Boisson; Yuki Orito; Céline Lacroix; Emmanuel Bischoff; Céline Loussert; Chris J. Janse; Robert Ménard; Masao Yuda; Patricia Baldacci

Most Apicomplexa are obligatory intracellular parasites that multiply inside a so‐called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium, the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 (liver‐specific protein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1‐deficient liver‐stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.


Blood | 2012

Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties

Sohini Sanyal; Stéphane Egée; Guillaume Bouyer; Sylvie Perrot; Innocent Safeukui; Emmanuel Bischoff; Pierre Buffet; Kirk W. Deitsch; Odile Mercereau-Puijalon; Peter H. David; Thomas J. Templeton; Catherine Lavazec

Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.

Collaboration


Dive into the Emmanuel Bischoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Awa Gneme

University of Ouagadougou

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge