Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Denou is active.

Publication


Featured researches published by Emmanuel Denou.


Gastroenterology | 2011

The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice

Premysl Bercik; Emmanuel Denou; Josh Collins; Wendy Jackson; Jun Lu; Jennifer Jury; Yikang Deng; Patricia Blennerhassett; Joseph Macri; Kathy D. McCoy; Elena F. Verdu; Stephen M. Collins

BACKGROUND & AIMS Alterations in the microbial composition of the gastrointestinal tract (dysbiosis) are believed to contribute to inflammatory and functional bowel disorders and psychiatric comorbidities. We examined whether the intestinal microbiota affects behavior and brain biochemistry in mice. METHODS Specific pathogen-free (SPF) BALB/c mice, with or without subdiaphragmatic vagotomy or chemical sympathectomy, or germ-free BALB/c mice received a mixture of nonabsorbable antimicrobials (neomycin, bacitracin, and pimaricin) in their drinking water for 7 days. Germ-free BALB/c and NIH Swiss mice were colonized with microbiota from SPF NIH Swiss or BALB/c mice. Behavior was evaluated using step-down and light preference tests. Gastrointestinal microbiota were assessed using denaturing gradient gel electrophoresis and sequencing. Gut samples were analyzed by histologic, myeloperoxidase, and cytokine analyses; levels of serotonin, noradrenaline, dopamine, and brain-derived neurotropic factor (BDNF) were assessed by enzyme-linked immunosorbent assay. RESULTS Administration of oral antimicrobials to SPF mice transiently altered the composition of the microbiota and increased exploratory behavior and hippocampal expression of BDNF. These changes were independent of inflammatory activity, changes in levels of gastrointestinal neurotransmitters, and vagal or sympathetic integrity. Intraperitoneal administration of antimicrobials to SPF mice or oral administration to germ-free mice did not affect behavior. Colonization of germ-free BALB/c mice with microbiota from NIH Swiss mice increased exploratory behavior and hippocampal levels of BDNF, whereas colonization of germ-free NIH Swiss mice with BALB/c microbiota reduced exploratory behavior. CONCLUSIONS The intestinal microbiota influences brain chemistry and behavior independently of the autonomic nervous system, gastrointestinal-specific neurotransmitters, or inflammation. Intestinal dysbiosis might contribute to psychiatric disorders in patients with bowel disorders.


Gastroenterology | 2011

Proton Pump Inhibitors Exacerbate NSAID-Induced Small Intestinal Injury by Inducing Dysbiosis

John L. Wallace; Stephanie D. Syer; Emmanuel Denou; Giada De Palma; Linda Vong; Webb McKnight; Jennifer Jury; Manlio Bolla; Premysl Bercik; Stephen M. Collins; Elena F. Verdu; Ennio Ongini

BACKGROUND & AIMS Proton pump inhibitors (PPIs) and nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used classes of drugs, with the former frequently coprescribed to reduce gastroduodenal injury caused by the latter. However, suppression of gastric acid secretion by PPIs is unlikely to provide any protection against the damage caused by NSAIDs in the more distal small intestine. METHODS Rats were treated with antisecretory doses of omeprazole or lanzoprazole for 9 days, with concomitant treatment with anti-inflammatory doses of naproxen or celecoxib on the final 4 days. Small intestinal damage was blindly scored, and changes in hematocrit were measured. Changes in small intestinal microflora were evaluated by denaturing gradient gel electrophoresis and reverse-transcription polymerase chain reaction. RESULTS Both PPIs significantly exacerbated naproxen- and celecoxib-induced intestinal ulceration and bleeding in the rat. Omeprazole treatment did not result in mucosal injury or inflammation; however, there were marked shifts in numbers and types of enteric bacteria, including a significant reduction (∼80%) of jejunal Actinobacteria and Bifidobacteria spp. Restoration of small intestinal Actinobacteria numbers through administration of selected (Bifidobacteria enriched) commensal bacteria during treatment with omeprazole and naproxen prevented intestinal ulceration/bleeding. Colonization of germ-free mice with jejunal bacteria from PPI-treated rats increased the severity of NSAID-induced intestinal injury, as compared with mice colonized with bacteria from vehicle-treated rats. CONCLUSIONS PPIs exacerbate NSAID-induced intestinal damage at least in part because of significant shifts in enteric microbial populations. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of NSAID enteropathy.


Nature Communications | 2015

Microbiota and host determinants of behavioural phenotype in maternally separated mice

G. De Palma; Patricia Blennerhassett; Jun Lu; Yikang Deng; Amber J. Park; W. Green; Emmanuel Denou; Manuel A. Silva; Arlette Santacruz; Yolanda Sanz; Michael G. Surette; Elena F. Verdu; Stephen M. Collins; Premysl Bercik

Early-life stress is a determinant of vulnerability to a variety of disorders that include dysfunction of the brain and gut. Here we exploit a model of early-life stress, maternal separation (MS) in mice, to investigate the role of the intestinal microbiota in the development of impaired gut function and altered behaviour later in life. Using germ-free and specific pathogen-free mice, we demonstrate that MS alters the hypothalamic-pituitary-adrenal axis and colonic cholinergic neural regulation in a microbiota-independent fashion. However, microbiota is required for the induction of anxiety-like behaviour and behavioural despair. Colonization of adult germ-free MS and control mice with the same microbiota produces distinct microbial profiles, which are associated with altered behaviour in MS, but not in control mice. These results indicate that MS-induced changes in host physiology lead to intestinal dysbiosis, which is a critical determinant of the abnormal behaviour that characterizes this model of early-life stress.


Digestive and Liver Disease | 2009

The putative role of the intestinal microbiota in the irritable bowel syndrome

Stephen M. Collins; Emmanuel Denou; Elena F. Verdu; P. Bercik

The irritable bowel syndrome (IBS) is a chronic abdominal symptom complex that is heterogeneous in terms of its clinical presentation and underlying pathophysiology and pathogenesis. It is now established that enteric infection can trigger the syndrome in at least a subset of patients. In addition, there is growing evidence of low grade inflammation and immune activation in the distal bowel of some IBS patients. These observations now prompt the question as to what maintains gut dysfunction in these patients. The intestinal microbiota influences a broad array of host organs that include the gut and the brain, and is an important determinant of normal function in these systems. Disruption of the delicate balance between the host and its intestinal microbiota (termed dysbiosis) results in changes in the mucosal immune system that range from overt inflammation as seen in Crohns Disease, to low grade inflammation without tissue injury, as seen in a subset of IBS patients. Under experimental conditions, disruption of the microbiota also produces changes in gut sensory-motor function and immune activity. Thus, dysbiosis induced by infection, dietary change or drugs such as antibiotics could produce low grade inflammation and chronic gut dysfunction, reminiscent of that seen in IBS. Fluctuations in gut physiology destabilize the habitat of commensal bacteria and provide a basis for chronic dysbiosis. Recent observations in animal models that changes in gut flora influence behavior provide a basis for a novel unifying hypothesis that accommodates both gut dysfunction and behavioral changes that characterize many IBS patients. This hypothesis states that dysbiosis exists in at least a subset of IBS patients, as a result of infection, dietary change or drugs and contributes to gut inflammatory and functional change in addition to psychiatric co-morbidity.


Embo Molecular Medicine | 2015

Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance

Emmanuel Denou; Karine Lolmède; Lucile Garidou; Céline Pomié; Trevor C. Lau; Morgan D. Fullerton; Giulia Nigro; Alexia Zakaroff-Girard; Elodie Luche; Céline Garret; Matteo Serino; Jacques Amar; Joseph F. Cavallari; Brandyn D. Henriksbo; Nicole G. Barra; Kevin P. Foley; Joseph B. McPhee; Brittany M. Duggan; Hayley M. O'Neill; Amanda J. Lee; Philippe J. Sansonetti; Ali A. Ashkar; Waliul I. Khan; Michael G. Surette; Anne Bouloumié; Gregory R. Steinberg; Rémy Burcelin; Jonathan D. Schertzer

Pattern recognition receptors link metabolite and bacteria‐derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity‐promoting high‐fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2−/− mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a HFD. This effect is independent of altered adiposity or NOD2 in hematopoietic‐derived immune cells. Instead, increased metabolic inflammation and insulin resistance in NOD2−/− mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact PGN‐NOD2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in HFD‐fed NOD2−/− mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to WT, germ‐free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes.


PLOS ONE | 2009

Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

Jane M. Natividad; Xianxi Huang; Emma Slack; Jennifer Jury; Yolanda Sanz; Chella S. David; Emmanuel Denou; Pinchang Yang; Joseph A. Murray; Kathy D. McCoy; Elena F. Verdu

Background and Aims Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. Methodology/Principal Findings HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-γ in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. Conclusion Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-γ production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.


American Journal of Physiology-endocrinology and Metabolism | 2016

High intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity

Emmanuel Denou; Katarina Marcinko; Michael G. Surette; Gregory R. Steinberg; Jonathan D. Schertzer

Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces.


Digestive Diseases | 2009

The Role of Pathogenic Microbes and Commensal Bacteria in Irritable Bowel Syndrome

Stephen M. Collins; Elena F. Verdu; Emmanuel Denou; Premsyl Bercik

Background: Irritable bowel syndrome (IBS) reflects several pathogenetic entities including a subgroup with low-grade colonic inflammation. We propose that pathogenic bacteria act as triggers and that disturbances of commensal bacteria maintain low-grade inflammation, that in turn leads to dysfunction in the gut or brain. Methods: Studies were performed in mice under specific pathogen-free conditions. Visceral pain was assessed by the visceromotor response and motility was assessed by in vivo fluoroscopy and in vitro by muscle contractility. Brain chemistry was assessed by in situ hybridization and behavior by standard tests. The microbiota was monitored using 16s-based RT-PCR and DGGE. Results: Mice transiently infected with the nematode Trichinella spiralis exhibited changes in motility and in visceral perception that persisted for up to 6 weeks post-infection. This was accompanied by alterations in the microbiota and an upregulation of cyclooxygenase-2 which could be reversed by treatment with anti-inflammatory agents or selected probiotics. To investigate the contribution of the microbiota, we treated mice with oral antibiotics and monitored visceral perception and behavior. Antibiotic therapy produced substantial changes in the microbiota, a small increment in inflammatory activity and an increase in substance P or pain perception. Oral, but not systemic antibiotic treatment, produced changes in brain chemistry and an increase in anxiety-like behavior. Conclusion: These studies provide proof of concept that pathogenic microbes can induce persistent gut dysfunction and that changes in microbial composition of the gut can maintain gut dysfunction as well as induce behavioral changes reminiscent of the psychiatric comorbidity that occurs in up to 60% of irritable bowel syndrome patients.


PLOS ONE | 2013

Interleukin 13 and Serotonin: Linking the Immune and Endocrine Systems in Murine Models of Intestinal Inflammation

Md. Sharif Shajib; Huaqing Wang; Janice J. Kim; Ivana Sunjic; Jean-Eric Ghia; Emmanuel Denou; Matthew Collins; Judah A. Denburg; Waliul I. Khan

Objective Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis. Methodology Colitis was induced in IL-13 deficient (IL-13−/−) and wild-type (WT) mice with dextran sulfate sodium (DSS) and dinitrobenzene sulfonic acid (DNBS), as well as in IL-13−/− mice given recombinant mouse IL-13 (rmIL-13) and 5-hydroxytryptamine (5-HTP), the direct precursor of 5-HT. Principal Findings and Conclusion Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13−/− mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13−/− mice compared to WT. The reduced severity of colitis observed in IL-13−/− mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13−/− mice. IL-13−/− mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which may ultimately lead to better strategy in managing various intestinal inflammatory conditions including inflammatory bowel disease.


PLOS ONE | 2014

Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

Nicole G. Barra; Rengasamy Palanivel; Emmanuel Denou; Marianne V. Chew; Amy Gillgrass; Tina D. Walker; Josh Kong; Carl D. Richards; Manel Jordana; Stephen M. Collins; Bernardo L. Trigatti; Alison C. Holloway; Sandeep Raha; Gregory R. Steinberg; Ali A. Ashkar

Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function.

Collaboration


Dive into the Emmanuel Denou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge