Emmanuel E. Odjadjare
University of Fort Hare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel E. Odjadjare.
African Journal of Biotechnology | 2007
Anthony I. Okoh; Emmanuel E. Odjadjare; Etinosa O. Igbinosa; Augustina N. Osode
Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in the 21st century, and despite large advances in water and wastewater treatments, waterborne diseases still pose a major threat to public health worldwide. Several questions have been raised on the capacity of current wastewater treatment regimes to remove pathogens from wastewater with many waterborne diseases linked to supposedly treated water supplies. One of the major gaps in the knowledge of pathogenic microorganisms in wastewater is the lack of a thorough understanding of the survival and persistence of the different microbial types in different conditions and environments. This therefore brings to the fore the need for a thorough research into the movement and behavior of these microorganisms in wastewaters. In this review paper we give an overview of wastewater treatment practices with particular emphasis on the removal of microbial pathogens.
The Scientific World Journal | 2013
Etinosa O. Igbinosa; Emmanuel E. Odjadjare; Vincent N. Chigor; Isoken H. Igbinosa; Alexander O. Emoghene; Fredrick O. Ekhaise; Nicholas O. Igiehon; Omoruyi G. Idemudia
Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity, and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health, and proffers measures for mitigation.
International Journal of Molecular Sciences | 2011
Osamuyimen Igbinosa; Isoken H. Igbinosa; Vincent N. Chigor; Olohirere E. Uzunuigbe; Sunday Oyedemi; Emmanuel E. Odjadjare; Anthony I. Okoh; Etinosa O. Igbinosa
We assessed the polyphenolic contents and antioxidant potential of the aqueous, ethanol and methanol stem bark extracts of Jatropha curcas. The total phenol, flavonoids, flavonols and proanthocyanidin contents of the extracts were evaluated to determine their effect on the antioxidant property of this plant, using standard phytochemical methods. The antioxidant and free radical scavenging activity of ethanol, methanol and aqueous extracts of the plant were also assessed against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing, nitric oxide (NO), superoxide anion, (O2−) and hydrogen peroxide (H2O2) using spectroscopic methods and results were compared with that of butylated hydroxyl toluene (BHT) and ascorbic acid as standards. The concentrations of different classes of phenolic compounds were higher in methanol and ethanol extracts compared to aqueous extracts. There was correlation between total phenol, total flavonoids, total flavonol and total proanthocyanidins (r = 0.996, 0.978, 0.908, and 0.985) respectively. There was correlations between the amount of phenolic compounds and percentage inhibition of DPPH radicals scavenging activity of the extract (r = 0.98). Findings from the present study indicated that J. curcas is a potential source of natural antioxidants and may be a good candidate for pharmaceutical plant based products.
International Journal of Environmental Research and Public Health | 2012
Emmanuel E. Odjadjare; Etinosa O. Igbinosa; Raphael C. Mordi; Bright Igere; Clara L. Igeleke; Anthony I. Okoh
The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes.
International Journal of Environmental Research and Public Health | 2010
Emmanuel E. Odjadjare; Larry Chikwelu Obi; Anthony I. Okoh
We evaluated the effluent quality of an urban wastewater treatment facility in South Africa and its impact on the receiving watershed for a period of 12 months. The prevalence and antimicrobial susceptibility of potential Listeria pathogens (L. ivanovii and L. innocua) and the physicochemical quality of the treated wastewater effluent was assessed, with a view to ascertain the potential health and environmental hazards of the discharged effluent. Total listerial density varied between 2.9 × 100 and 1.2 × 105 cfu/mL; free living Listeria species were more prevalent (84%), compared to Listeria species attached to planktons (59–75%). The treated effluent quality fell short of recommended standards for turbidity, dissolved oxygen, chemical oxygen demand, nitrite, phosphate and Listeria density; while pH, temperature, total dissolved solids and nitrate contents were compliant with target quality limits after treatment. The Listeria isolates (23) were sensitive to three (15%) of the 20 test antibiotics, and showed varying (4.5–91%) levels of resistance to 17 antibiotics. Of seven resistance gene markers assayed, only sulII genes were detected in five (22%) Listeria strains. The study demonstrates a potential negative impact of the wastewater effluent on the receiving environment and suggests a serious public health implication for those who depend on the receiving watershed for drinking and other purposes.
The Scientific World Journal | 2012
Etinosa O. Igbinosa; Emmanuel E. Odjadjare; Isoken H. Igbinosa; Phillips O. Orhue; May N. O. Omoigberale; Napoleon I. Amhanre
Pseudomonas aeruginosa is an opportunistic pathogen in environmental waters with a high prevalence of multidrug resistance. In this study the synergistic efficacy of synergy antibiotic combinations in multidrug-resistant P. aeruginosa strains isolated from an abattoir effluent was investigated. Water samples were processed using membrane filtration; Pseudomonas was isolated with Pseudomonas Isolation Agar and confirmed using polymerase chain reaction with specie-specific primer. Susceptibility studies and in vitro synergy interaction testing were carried out, employing agar dilution and Etest procedure, respectively. Resistance was noted for clinically relevant antipseudomonal agents tested. Finding from antibiotic synergy interaction studies revealed that cefepime, imipenem, and meropenem combined with amikacin resulted in statistically significant (P < 0.0001) in vitro antibiotics synergy interaction, indicating the possible use of this regimen in treatment of pseudomonal infections.
Archive | 2007
O O Igbinosa; Emmanuel E. Odjadjare; O E Igbinosa; Anthony I. Okoh
Environmental Monitoring and Assessment | 2010
Emmanuel E. Odjadjare; Anthony I. Okoh
World Journal of Microbiology & Biotechnology | 2010
Emmanuel E. Odjadjare; Anthony I. Okoh
African Journal of Traditional, Complementary and Alternative Medicines | 2013
Etinosa O. Igbinosa; Edwina O. Uzunuigbe; Isoken H. Igbinosa; Emmanuel E. Odjadjare; Nicholas O. Igiehon; Oke A. Emuedo