Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Griessinger is active.

Publication


Featured researches published by Emmanuel Griessinger.


Journal of Experimental Medicine | 2010

Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells

Lionel Franz Poulin; Mariolina Salio; Emmanuel Griessinger; Fernando Anjos-Afonso; Ligia Craciun; Ji-Li Chen; Anna M. Keller; Olivier Joffre; Santiago Zelenay; Emma Nye; Alain Le Moine; Florence Faure; Vincent Donckier; David Sancho; Vincenzo Cerundolo; Dominique Bonnet; Caetano Reis e Sousa

In mouse, a subset of dendritic cells (DCs) known as CD8α+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8α+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8α+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8α+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8α+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.


Blood | 2010

Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34− fraction

David Taussig; Jacques Vargaftig; Farideh Miraki-Moud; Emmanuel Griessinger; Kirsty Sharrock; Tina Luke; Debra M. Lillington; Heather Oakervee; Jamie Cavenagh; Samir G. Agrawal; T. Andrew Lister; John G. Gribben; Dominique Bonnet

Leukemia-initiating cells (LICs) in acute myeloid leukemia (AML) are believed to be restricted to the CD34(+) fraction. However, one of the most frequently mutated genes in AML is nucleophosmin (NPM), and this is associated with low CD34 expression. We, therefore, investigated whether NPM-mutated AMLs have LICs restricted to the CD34(+) fraction. We transplanted sorted fractions of primary NPM-mutated AML into immunodeficient mice to establish which fractions initiate leukemia. Approximately one-half of cases had LICs exclusively within the CD34(-) fraction, whereas the CD34(+) fraction contained normal multilineage hematopoietic repopulating cells. Most of the remaining cases had LICs in both CD34(+) and CD34(-) fractions. When samples were sorted based on CD34 and CD38 expression, multiple fractions initiated leukemia in primary and secondary recipients. The data indicate that the phenotype of LICs is more heterogeneous than previously realized and can vary even within a single sample. This feature of LICs may make them particularly difficult to eradicate using therapies targeted against surface antigens.


Cancer Cell | 2010

β-Catenin Mediates the Establishment and Drug Resistance of MLL Leukemic Stem Cells

Jenny Yeung; Maria Esposito; Arnaud Gandillet; Bernd B. Zeisig; Emmanuel Griessinger; Dominique Bonnet; Chi Wai Eric So

Identification of molecular pathways essential for cancer stem cells is critical for understanding the underlying biology and designing effective cancer therapeutics. Here, we demonstrated that β-catenin was activated during development of MLL leukemic stem cells (LSCs). Suppression of β-catenin reversed LSCs to a pre-LSC-like stage and significantly reduced the growth of human MLL leukemic cells. Conditional deletion of β-catenin completely abolished the oncogenic potential of MLL-transformed cells. In addition, established MLL LSCs that have acquired resistance against GSK3 inhibitors could be resensitized by suppression of β-catenin expression. These results unveil previously unrecognized multifaceted functions of β-catenin in the establishment and drug-resistant properties of MLL stem cells, highlighting it as a potential therapeutic target for an important subset of AMLs.


Oncogene | 2003

AS602868, a pharmacological inhibitor of IKK2, reveals the apoptotic potential of TNF- α in Jurkat leukemic cells

Catherine Frelin; Véronique Imbert; Emmanuel Griessinger; Agnès Loubat; Michel Dreano; Jean-François Peyron

NF-κB transcription factors promote survival in numerous cell types via induction of antiapoptotic genes. Pharmacological blockade of the IKK2 kinase with AS602868, a specific inhibitor that competes with ATP binding, prevented TNF-α-induced NF-κB activation in Jurkat leukemic T cells. While TNF-α by itself had no effect on Jurkat survival, the addition of AS602868 induced cell death, visualized by DNA fragmentation and sub-G1 analysis. A disruption of the mitochondrial potential followed by activation of caspases 9 and 3 was observed in cells treated by the combination TNF-α+AS602868. Quantitative real-time PCR demonstrated that AS602868 prevented TNF-α induction of the antiapoptotic genes coding for c-IAP-2, Bclx, Bfl-1/A1 and Traf-1. The use of a specific IKK2 inhibitor appears, therefore, as an interesting pharmaceutical strategy to increase the cells sensitivity towards apoptotic effectors.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation

Farideh Miraki-Moud; Fernando Anjos-Afonso; Katharine A. Hodby; Emmanuel Griessinger; Guglielmo Rosignoli; Debra M. Lillington; Li Jia; Jeff K. Davies; Jamie Cavenagh; Matthew Smith; Heather Oakervee; Samir G. Agrawal; John G. Gribben; Dominique Bonnet; David Taussig

Acute myeloid leukemia (AML) induces bone marrow (BM) failure in patients, predisposing them to life-threatening infections and bleeding. The mechanism by which AML mediates this complication is unknown but one widely accepted explanation is that AML depletes the BM of hematopoietic stem cells (HSCs) through displacement. We sought to investigate how AML affects hematopoiesis by quantifying residual normal hematopoietic subpopulations in the BM of immunodeficient mice transplanted with human AML cells with a range of genetic lesions. The numbers of normal mouse HSCs were preserved whereas normal progenitors and other downstream hematopoietic cells were reduced following transplantation of primary AMLs, findings consistent with a differentiation block at the HSC–progenitor transition, rather than displacement. Once removed from the leukemic environment, residual normal hematopoietic cells differentiated normally and outcompeted steady-state hematopoietic cells, indicating that this effect is reversible. We confirmed the clinical significance of this by ex vivo analysis of normal hematopoietic subpopulations from BM of 16 patients with AML. This analysis demonstrated that the numbers of normal CD34+CD38− stem-progenitor cells were similar in the BM of AML patients and controls, whereas normal CD34+CD38+ progenitors were reduced. Residual normal CD34+ cells from patients with AML were enriched in long-term culture, initiating cells and repopulating cells compared with controls. In conclusion the data do not support the idea that BM failure in AML is due to HSC depletion. Rather, AML inhibits production of downstream hematopoietic cells by impeding differentiation at the HSC–progenitor transition.


Blood | 2016

Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy

Ruxanda Moschoi; Véronique Imbert; Marielle Nebout; Johanna Chiche; Didier Mary; Thomas Prebet; Estelle Saland; Rémy Castellano; Laurent Pouyet; Yves Collette; Norbert Vey; Christian Chabannon; Christian Recher; Jean-Emmanuel Sarry; Damien Alcor; Jean-François Peyron; Emmanuel Griessinger

Here we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture, recipient AML cells showed a 1.5-fold increase in mitochondrial adenosine triphosphate production and were less prone to mitochondrial depolarization after chemotherapy, displaying a higher survival. This unidirectional transfer enhanced by some chemotherapeutic agents required cell-cell contacts and proceeded through an endocytic pathway. Transfer was greater in AML blasts compared with normal cord blood CD34(+) cells. Finally, we demonstrate that mitochondrial transfer was observed in vivo in an NSG immunodeficient mouse xenograft model and also occurred in human leukemia initiating cells and progenitors. As mitochondrial transfer provides a clear survival advantage following chemotherapy and a higher leukemic long-term culture initiating cell potential, targeting mitochondrial transfer could represent a future therapeutic target for AML treatment.


Stem Cells Translational Medicine | 2014

A Niche-Like Culture System Allowing the Maintenance of Primary Human Acute Myeloid Leukemia-Initiating Cells: A New Tool to Decipher Their Chemoresistance and Self-Renewal Mechanisms

Emmanuel Griessinger; Fernando Anjos-Afonso; Irene Pizzitola; Kevin Rouault-Pierre; Jacques Vargaftig; David Taussig; John G. Gribben; Francois Lassailly; Dominique Bonnet

Acute myeloid leukemia‐initiating cells (LICs) are responsible for the emergence of leukemia and relapse after chemotherapy. Despite their identification more than 15 years ago, our understanding of the mechanisms responsible for their self‐renewal activity and their chemoresistance remains poor. The slow progress in this area is partly due to the difficulty of studying these cells ex vivo. Indeed, current studies are reliant on xenotransplantation assays in immunodeficient mice. In this paper, we report that by modeling key elements of the bone marrow niche using different stromal feeder layers and hypoxic culture conditions, we can maintain LICs over at least 3 weeks and support their self‐renewal properties demonstrated through primary and secondary successful xenograft. We provide a proof of principle that this niche‐like culture system can be used to study LIC chemoresistance following in vitro cytarabine treatment similarly to the xenograft chemotherapy model. We found that although LICs are believed to be more chemoresistant than non‐LICs, functionally defined LICs are not enriched after cytarabine treatment, and heterogeneity in their resistance to treatment can be seen between patients and even within the same patient. We present a culture system that can be used as an in vitro surrogate for xenotransplantation and that has the potential to dramatically increase the throughput of the investigation of LICs. This would further provide the means by which to identify and target the functionality of the different signaling pathways involved in the maintenance and resistance of LICs to improve acute myeloid leukemia treatments.


Cancer Discovery | 2017

Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism

Thomas Farge; Estelle Saland; Fabienne De Toni; Nesrine Aroua; Moshen Hosseini; Robin Perry; Claudie Bosc; Mayumi Sugita; Lucille Stuani; Marine Fraisse; Sarah Scotland; Clément Larrue; Héléna Boutzen; Virginie Féliu; Marie-Laure Nicolau-Travers; Stephanie Cassant-Sourdy; Nicolas Broin; Marion David; Nizar Serhan; Audrey Sarry; Suzanne Tavitian; Tony Kaoma; Laurent Vallar; Jason Iacovoni; Laetitia Karine Linares; Camille Montersino; Rémy Castellano; Emmanuel Griessinger; Yves Collette; Olivier Duchamp

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Leukemia | 2011

Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation

A Gandillet; S Park; Francois Lassailly; Emmanuel Griessinger; Jacques Vargaftig; Andrew Filby; T A Lister; Dominique Bonnet

Dysregulation of the Wnt/β-catenin pathway has been observed in various malignancies, including acute myeloid leukemia (AML), where the overexpression of β-catenin is an independent adverse prognostic factor. β-catenin was found upregulated in the vast majority of AML samples and more frequently localized in the nucleus of leukemic stem cells compared with normal bone marrow CD34+ cells. The knockdown of β-catenin, using a short hairpin RNA (shRNA) lentiviral approach, accelerates all-trans retinoic acid-induced differentiation and impairs the proliferation of HL60 leukemic cell line. Using in vivo quantitative tracking of these cells, we observed a reduced engraftment potential after xenotransplantation when β-catenin was silenced. However, when studying primary AML cells, despite effective downregulation of β-catenin we did not observe any impairment of their in vitro long-term maintenance on MS-5 stroma nor of their engraftment potential in vivo. Altogether, these results show that despite a frequent β-catenin upregulation in AML, leukemia-initiating cells might not be ‘addicted’ to this pathway and thus targeted therapy against β-catenin might not be successful in all patients.


Leukemia | 2012

Frequency of leukemic initiating cells does not depend on the xenotransplantation model used

J Vargaftig; David Taussig; Emmanuel Griessinger; Fernando Anjos-Afonso; T. A. Lister; J Cavenagh; Heather Oakervee; John G. Gribben; Dominique Bonnet

Frequency of leukemic initiating cells does not depend on the xenotransplantation model used

Collaboration


Dive into the Emmanuel Griessinger's collaboration.

Top Co-Authors

Avatar

David Taussig

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

John G. Gribben

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Collette

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Nakhle

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge