Emmanuel I. Unuabonah
Redeemer's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel I. Unuabonah.
Journal of Hazardous Materials | 2008
Emmanuel I. Unuabonah; Kayode O. Adebowale; Folasegun A. Dawodu
Raw Kaolinite clay obtained Ubulu-Ukwu, Delta State of Nigeria and its sodium tetraborate (NTB)-modified analogue was used to adsorb Aniline blue dye. Fourier transformed infrared spectra of NTB-modified Kaolinite suggests that modification was effective on the surface of the Kaolinite clay with the strong presence of inner -OH functional group. The modification of Kaolinite clay raised its adsorption capacity from 1666 to 2000 mg/kg. Modeling adsorption data obtained from both unmodified and NTB-modified Kaolinite clay reveals that the adsorption of Aniline blue dye on unmodified Kaolinite clay is on heterogeneous adsorption sites because it followed strongly the Freundlich isotherm equation model while adsorption data from NTB-modified Kaolinite clay followed strongly the Langmuir isotherm equation model which suggest that Aniline blue dye was adsorb homogeneous adsorption sites on the NTB-modified adsorbent surface. There was an observed increase in the amount of Aniline blue adsorbed as initial dye concentration was increased from 10 to 30 mg/L. It was observed that kinetic data obtained generally gave better robust fit to the second-order kinetic model (SOM). The initial sorption rate was found to increased with increasing initial dye concentration (from 10 to 20 mg/L) for data obtained from 909 to 1111 mg kg(-1)min(-1) for unmodified and 3325-5000 mg kg(-1) min(-1) for NTB-modified adsorbents. Thereafter there was a decrease in initial sorption rate with further increase in dye concentration. The linearity of the plots of the pseudo-second-order model with very high-correlation coefficients indicates that chemisorption is involved in the adsorption process. From the design of a single-batch adsorber it is predicted that the NTB-modified Kaolinite clay adsorbent will require 50% less of the adsorbent to treat certain volumes of wastewater containing 30 mg/L of Aniline blue dye when it is compared with the unmodified adsorbent. This will be cost effective in the use of NTB-modified adsorbent for the adsorption of Aniline blue dye from water and wastewater.
Bioresource Technology | 2010
Augustine E. Ofomaja; Emmanuel I. Unuabonah; N.A. Oladoja
Mansonia wood sawdust is applied as a biosorbent for the removal of copper and lead ions from single and binary aqueous solution. The effect of solution pH, electrolyte, metal ion competition and temperature were examined to obtain insight of its application for industrial waste water treatment. The Langmuir isotherm provided a better fit to experimental data for lead ion sorption with a higher monolayer capacity, while copper ion sorption was best described by the Freundlich and BET isotherms. The combined effect of adsorbing one metal ion in the presence of the other metal ion reduced the adsorption capacity of either metal ion. In a binary solution, removal of lead ions in the presence of copper ions followed the Langmuir isotherm model while the removal of copper ions in presence of lead ions followed both the Langmuir and BET isotherm models.
Journal of Hazardous Materials | 2010
Emmanuel I. Unuabonah; Bamidele I. Olu-Owolabi; Esther I. Fasuyi; Kayode O. Adebowale
Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400+/-13 mg/L (1236 mg/g) and a maximum adsorption rate constant of approximately = 7.45x10(-3)+/-0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (delta) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd(2+) concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd(2+) onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model.
Journal of Hazardous Materials | 2010
Bamidele I. Olu-Owolabi; Emmanuel I. Unuabonah
The modification of pristine Bentonite clay with sulphate and phosphate anions was found to increase its cation-exchange capacity (CEC), adsorption capacity and overall pseudo-second order kinetic rate constant for the adsorption of Cu(2+) and Zn(2+). Modification with sulphate and phosphate anion decreased the specific surface area of pristine Bentonite clay. Phosphate-modified Bentonite clay was found to give the highest adsorption capacity for both metal ions. The adsorption process was observed to be endothermic and spontaneous in nature for both metal ions with Zn(2+) being more adsorbed. Modification with phosphate anion increased the spontaneity of the adsorption process. The effective modification of pristine Bentonite clay with sulphate anion was confirmed from hypochromic shifts in the range of 13-18 cm(-1) which is typical of physisorption while modification with phosphate anion was confirmed by its hyperchromic shifts typical of chemisorption in the infrared red region using Fourier transformed infrared spectroscopy (FTIR). Using the model efficiency indicator, kinetic data were found to show very strong fit to the pseudo-second order kinetic model implying that the adsorption of Cu(2+) and Zn(2+) were basically by chemisorption.
Adsorption Science & Technology | 2008
Emmanuel I. Unuabonah; Bamidele I. Olu-Owolabi; Kayode O. Adebowale; L.Z. Yang
Kaolinite clay was modified with polyvinyl alcohol (PVA) to obtain a PVA–nano-clay adsorbent. X-Ray diffraction measurements of the adsorbent showed no observable change in the d-spacing of its crystal lattice. Scanning electron microscopy of the PVA-modified nano-clay adsorbent indicated the presence of irregular crystal structures. Infrared spectroscopy suggested that the PVA–nano-clay adsorbent basically possessed outer –OH functional groups. This adsorbent was found to have an adsorption capacity of 56.18 mg/g for Pb2+ ions and 41.67 mg/g for Cd2+ ions. The adsorption data obtained was well explained by the Diffuse Layer Model (DLM), which implies that the adsorption of both metal ions onto the modified adsorbent was via an inner-sphere surface complexation mechanism. The ΔH0 values for the adsorption of both metal ions onto the PVA–nano-clay were −12.48 kJ/mol for Pb2+ ions and −13.49 kJ/mol for Cd2+ ions, with both ions exhibiting negative adsorption entropies. Data-fitting indicated that both the PVA–nano-clay and the unmodified adsorbent possessed homogeneous and heterogeneous adsorption sites. Virtually complete desorption (ca. 99%) of both metal ions occurred from PVA–nano-clay within 3 min.
Journal of Hazardous Materials | 2009
Emmanuel I. Unuabonah; Bamidele I. Olu-Owolabi; D. Okoro; Kayode O. Adebowale
Kaolinite clay obtained from Ubulu-Ukwu, Delta State in Nigeria was modified with polyvinyl-alcohol (PVA) reagent to obtained PVA-modified Kaolinite clay. Kinetic and equilibrium data were obtained for the batch adsorption of Pb(2+) onto PVA-modified Kaolinite clay. Time-dependent Langmuir and pseudo-second order kinetic models (TDLM and PSOM) were developed to predict the optimized minimum operating time for the adsorption of Pb(2+) onto PVA-modified Kaolinite clay in a two-stage batch adsorber system. Results obtained suggest that the two-stage batch adsorber process leads to improved contact time and increased percentage Pb(2+) removal. Data from both models (TDLM and PSOM) were compared using t-test and F-test and were found to be precise enough for use in the optimization of kinetic data for a two-stage adsorption of Pb(2+) ions from aqueous solution.
Environmental Technology | 2014
Martins O. Omorogie; Jonathan O. Babalola; Emmanuel I. Unuabonah; Jian R. Gong
This study is a first-hand report of the immobilization of Nauclea diderrichii seed waste biomass (ND) (an agro-waste) with eco-friendly mesoporous silica (MS) and graphene oxide–MS (GO+MS ) nanoparticles, producing two new hybrid materials namely: MND adsorbent for agro-waste modified with MS and GND adsorbent for agro-waste modified with GO+MS nanoparticles showed improved surface area, pore size and pore volume over those of the agro-waste. The abstractive potential of the new hybrid materials was explored for uptake of Cr(III) and Pb(II) ions. Analysis of experimental data from these new hybrid materials showed increased initial sorption rate of Cr(III) and Pb(II) ions uptake. The amounts of Cr(III) and Pb(II) ions adsorbed by MND and GND adsorbents were greater than those of ND. Modification of N. diderrichii seed waste significantly improved its rate of adsorption and diffusion coefficient for Cr(III) and Pb(II) more than its adsorption capacity. The rate of adsorption of the heavy metal ions was higher with GO+MS nanoparticles than for other adsorbents. Kinetic data were found to fit well the pseudo-second-order and the diffusion–chemisorption kinetic models suggesting that the adsorption of Cr(III) and Pb(II) onto these adsorbents is mainly through chemisorption mechanism. Analysis of kinetic data with the homogeneous particle diffusion kinetic model suggests that particle diffusion (diffusion of ions through the adsorbent) is the rate-limiting step for the adsorption process.
Desalination and Water Treatment | 2015
Emmanuel I. Unuabonah; Adedoyin O. Adedapo; Cynthia O. Nnamdi; Adewale Adewuyi; Martins O. Omorogie; Kayode O. Adebowale; Bamidele I. Olu-Owolabi; Augustine E. Ofomaja; Andreas Taubert
AbstractA novel low-cost papaya-clay combo adsorbent, hybrid clay (HYCA), was prepared from a combination of Carica papaya seeds and Kaolinite clay. HYCA breakthrough adsorption capacity was 35.46 mg/g for the adsorption of methylene blue (MB) dye in a pilot-scale fixed-bed reactor. In ca. 20 min, regeneration of MB dye-loaded HYCA reached at least 90% each cycle for five regeneration cycles. However, above 40°C, the HYCA adsorbent lost more than 50% of its adsorption capacity after five regeneration cycles. The AdDesignSTM software was used to successfully predict the breakthrough curve and scale-up performance of MB dye adsorption onto the HYCA adsorbent. The pore and surface diffusion model (PSDM) described experimental data better than the constant pattern homogeneous surface diffusion model. From economic assessment using the PSDM, the AdDesignSTM software predicted that 1 kg of HYCA can effectively treat 1.45 m3 (0.29 m3 each cycle) of water containing 1 mg/L of MB dye (with a treatment objective of...
Archive | 2017
N.A. Oladoja; Emmanuel I. Unuabonah; Omotayo S. Amuda; Olatunji Matthew Kolawole
In the last two decades, adsorbents have been developed from a variety of sources. Several of these adsorbents, though very efficient, are either still in their developmental stages in the laboratory or are not viable candidates for a large-scale treatment of water. Some of the adsorbents in the latter category are usually expensive to develop or suffer from certain drawbacks that ultimately influence negatively, their use in the large scale treatment of water. The development of polysaccharide-based adsorbents is considered a sustainable and green alternative that has future potentials to be used not only in the development of adsorbents but also membranes that are efficient in the treatment of water. This chapter reviews the progress made so far in the development of various polysaccharide-based adsorbents, their application in the removal of pollutants from water and a comparison of these adsorbents with conventional adsorbents. A look into some of the future issues surrounding the use of these polysaccharide-based adsorbents for water treatment and some of the challenges that may arise from their use as presented in this Chapter, could form the basis for future studies in the use of polysaccharide-based materials for water treatment.
Archive | 2017
N.A. Oladoja; Emmanuel I. Unuabonah; Omotayo S. Amuda; Olatunji Matthew Kolawole
In order to optimise the coagulation efficiencies of polysaccharide-based coagulants (PBC), it is expedient that the underlying coagulation mechanism of this green resource should be elucidated to enable proper understanding of the process. Consequently, the present chapter provides an overview of the active coagulating species in PBCs that have been investigated in water and wastewater treatment operations. Based on the identities of the different active coagulating species in PBC, an insight into the underlying coagulation mechanisms of these varieties of coagulants are provided in this chapter.