Emmanuel Labourier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel Labourier.
The Journal of Molecular Diagnostics | 2008
Martina Doleshal; Amber A. Magotra; Bhavna Choudhury; Brian D. Cannon; Emmanuel Labourier; Anna E. Szafranska
Histopathology archives of well-annotated formalin-fixed, paraffin-embedded (FFPE) tissue specimens are valuable resources for retrospective studies of human diseases. Since recovery of quality intact mRNA compatible with molecular techniques is often difficult due to degradation, we evaluated microRNA (miRNA), a novel class of small RNA molecules with growing therapeutic and diagnostic potential, as an alternative analyte for gene expression studies of FFPE samples. Analyzing total RNA yield, miRNA recovery, and robustness of real-time polymerase chain reaction for miRNA, mRNA, and rRNA species, we compared the performance of commercially available RNA isolation kits and identified a preferred methodology. We further implemented modifications to increase tissue throughput and incorporate a quantitative Armored RNA process control to monitor RNA recovery efficiency. The optimized process was tested for reproducibility as well as interoperator and interday variability, and was validated with a set of 30 clinical samples. In addition, we demonstrated that, independent of FFPE block age and RNA quality, miRNAs generate quantitative reverse transcription-polymerase chain reaction signals that are more robust and better correlate with expression levels from frozen reference samples compared with longer mRNAs. Our broad study, including a total of 272 independent RNA isolations from 17 tissue types and 65 FFPE blocks up to 12 years old, indicates that miRNAs are not only suitable but are also likely superior analytes for the molecular characterization of compromised archived clinical specimens.
Molecular and Cellular Biology | 1998
Imed-Eddine Gallouzi; Fabienne Parker; Karim Chebli; Florence Maurier; Emmanuel Labourier; Isabelle Barlat; Jean-Paul Capony; Bruno Tocque; Jamal Tazi
ABSTRACT A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung fibroblasts. In quiescent cells, G3BP was hyperphosphorylated on serine residues, and this modification was essential for its activity. Indeed, G3BP harbors a phosphorylation-dependent RNase activity which specifically cleaves the 3′-untranslated region of human c-myc mRNA. The endoribonuclease activity of G3BP can initiate mRNA degradation and therefore represents a link between a RasGAP-mediated signaling pathway and RNA turnover.
The Journal of Molecular Diagnostics | 2008
Anna E. Szafranska; Timothy Davison; Jaclyn Shingara; Martina Doleshal; Judith A. Riggenbach; Carl Morrison; Scott D. Jewell; Emmanuel Labourier
Formalin-fixed, paraffin-embedded tissues are an invaluable tool for biomarker discovery and validation. As these archived specimens are not always compatible with modern genomic techniques such as gene expression arrays, we assessed the use of microRNA (miRNA) as an alternative means for the reliable molecular characterization of formalin-fixed, paraffin-embedded tissues. Expression profiling using two different microarray platforms and multiple mouse and human formalin-fixed, paraffin-embedded tissue types resulted in the correlation ratios of miRNA expression levels between frozen and fixed tissue pairs ranging from 0.82 to 0.99, depending on the cellular heterogeneity of the tissue type. The same miRNAs were identified as differentially expressed between tissues using both fixed and frozen specimens. While formalin fixation time had only marginal effects on microarray performance, extended storage times for tissue blocks (up to 11 years) resulted in a gradual loss of detection of miRNAs expressed at low levels. Method reproducibility and accuracy were also evaluated in two different tissues stored for different lengths of time. The technical variation between full process replicates, including independent RNA isolation methods, was approximately 5%, and the correlation of expression levels between microarray and real-time quantitative reverse transcriptase polymerase chain reaction was 0.98. Together, these data demonstrate that miRNA expression profiling is an accurate and robust method for the molecular analysis of archived clinical specimens, potentially extending the use of miRNAs as new diagnostic, prognostic, and treatment response biomarkers.
The Journal of Clinical Endocrinology and Metabolism | 2015
Emmanuel Labourier; Alexander L. Shifrin; Anne E. Busseniers; Mark A. Lupo; Monique L. Manganelli; Bernard F. Andruss; Dennis Wylie; Sylvie Beaudenon-Huibregtse
CONTEXT Molecular testing for oncogenic mutations or gene expression in fine-needle aspirations (FNAs) from thyroid nodules with indeterminate cytology identifies a subset of benign or malignant lesions with high predictive value. OBJECTIVE This study aimed to evaluate a novel diagnostic algorithm combining mutation detection and miRNA expression to improve the diagnostic yield of molecular cytology. SETTING Surgical specimens and preoperative FNAs (n = 638) were tested for 17 validated gene alterations using the miRInform Thyroid test and with a 10-miRNA gene expression classifier generating positive (malignant) or negative (benign) results. DESIGN Cross-sectional sampling of thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) or follicular neoplasm/suspicious for a follicular neoplasm (FN/SFN) cytology (n = 109) was conducted at 12 endocrinology centers across the United States. Qualitative molecular results were compared with surgical histopathology to determine diagnostic performance and model clinical effect. RESULTS Mutations were detected in 69% of nodules with malignant outcome. Among mutation-negative specimens, miRNA testing correctly identified 64% of malignant cases and 98% of benign cases. The diagnostic sensitivity and specificity of the combined algorithm was 89% (95% confidence interval [CI], 73-97%) and 85% (95% CI, 75-92%), respectively. At 32% cancer prevalence, 61% of the molecular results were benign with a negative predictive value of 94% (95% CI, 85-98%). Independently of variations in cancer prevalence, the test increased the yield of true benign results by 65% relative to mRNA-based gene expression classification and decreased the rate of avoidable diagnostic surgeries by 69%. CONCLUSIONS Multiplatform testing for DNA, mRNA, and miRNA can accurately classify benign and malignant thyroid nodules, increase the diagnostic yield of molecular cytology, and further improve the preoperative risk-based management of benign nodules with AUS/FLUS or FN/SFN cytology.
The Journal of Molecular Diagnostics | 2010
Roberta Madej; Jack Davis; Marcia J. Holden; Stan Kwang; Emmanuel Labourier; George J. Schneider
The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives.
Journal of Clinical Pathology | 2011
Walairat Laosinchai-Wolf; Fei Ye; Vu Tran; Zhe Yang; Roxanna White; Kenneth Bloom; Paul Choppa; Emmanuel Labourier
Background Colorectal cancer patients harbouring KRAS mutations in codon 12 or 13 do not benefit from current anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies. Efficient and robust methods are therefore required for routine clinical testing of KRAS mutation status. Aims To evaluate a novel multiplex assay for the rapid detection of common KRAS mutations in formalin-fixed paraffin-embedded (FFPE) tissues. Methods Genomic DNA was amplified by multiplex PCR using primers targeting the KRAS codon 12/13 region and an internal control gene. PCR products were hybridised on a liquid bead array containing target-specific probes and detected by particle flow cytometry. Results Analytical performance assessed with plasmid DNA and genomic DNA extracted from cell lines or model FFPE cell line dilutions showed specific detection of seven distinct KRAS mutations with a limit of detection equivalent to 1% tumour. The assay was evaluated at two independent sites with a total of 140 clinical specimens. At site 1, about 45% of the specimens from a set of 86 archived FFPE blocks with unknown KRAS mutation status were found positive for a KRAS mutation. At site 2, each of the seven mutations was detected in at least five independent specimens from a selected set of 54 residual genomic DNAs previously tested with an ARMS/Scorpion laboratory-developed test. Conclusions This novel single-well assay is a sensitive tool compatible with the clinical laboratory workflow for the rapid assessment of KRAS mutations in solid tumour specimens. Its performance and multiplex format warrant the development of broader panels including other relevant mutations in the EGFR pathway.
Human Pathology | 2014
Thomas J. Giordano; Sylvie Beaudenon-Huibregtse; Rupali Shinde; Laura Langfield; Michelle Vinco; Walairat Laosinchai-Wolf; Emmanuel Labourier
Molecular testing for oncogenic gene alterations provides clinically actionable information essential for the optimal management of follicular cell thyroid cancer. We aimed to establish the distribution and frequency of common oncogenic gene mutations and chromosomal rearrangements in a comprehensive set of benign and malignant thyroid lesions. A case-control study was conducted in 413 surgical cases comprising 17 distinct histopathologic categories, 244 malignant, 169 benign, and 304 double-blinded specimens. Seventeen alterations of BRAF, HRAS, KRAS, NRAS, PAX8, and RET genes were evaluated using a single validated technology platform. Following verification of analytical sensitivity, accuracy, and precision in model and surgical specimens, 152 molecular positive results were generated in lesions representing multiple stages of progression and epithelial differentiation as well as rare subtypes of primary, secondary, or recurring tumors. Single mutations were found in 58% of primary malignant lesions and 12% of benign (P < .001). In the blinded validation set, mutation distribution and frequency were distinct across variants of follicular and papillary carcinomas. BRAF or RET-PTC was detected exclusively in malignant lesions but not in follicular carcinomas (P < .001). RAS or PAX8-PPARG were present in 23% of adenomas, and NRAS was found in a single nonneoplastic lesion (P = .0014). These data substantiate the diagnostic utility of molecular testing for oncogenic mutations and validate its performance in a variety of surgical specimens. Standardized and validated multianalyte molecular panels can complement the preoperative and postoperative assessment of thyroid nodules and support a growing number of clinical and translational applications with potential diagnostic, prognostic, or theranostic utility.
The Journal of Pathology: Clinical Research | 2016
Dennis Wylie; Sylvie Beaudenon-Huibregtse; Brian C. Haynes; Thomas J. Giordano; Emmanuel Labourier
Multiple molecular markers contribute to the pathogenesis of thyroid cancer and can provide valuable information to improve disease diagnosis and patient management. We performed a comprehensive evaluation of miRNA gene expression in diverse thyroid lesions (n = 534) and developed predictive models for the classification of thyroid nodules, alone or in combination with genotyping. Expression profiling by reverse transcription‐quantitative polymerase chain reaction in surgical specimens (n = 257) identified specific miRNAs differentially expressed in 17 histopathological categories. Eight supervised machine learning algorithms were trained to discriminate benign from malignant lesions and evaluated for accuracy and robustness. The selected models showed invariant area under the receiver operating characteristic curve (AUC) in cross‐validation (0.89), optimal AUC (0.94) in an independent set of preoperative thyroid nodule aspirates (n = 235), and classified 92% of benign lesions as low risk/negative and 92% of malignant lesions as high risk/positive. Surgical and preoperative specimens were further tested for the presence of 17 validated oncogenic gene alterations in the BRAF, RAS, RET or PAX8 genes. The miRNA‐based classifiers complemented and significantly improved the diagnostic performance of the 17‐mutation panel (p < 0.001 for McNemars tests). In a subset of resected tissues (n = 54) and in an independent set of thyroid nodules with indeterminate cytology (n = 42), the optimized ThyraMIR Thyroid miRNA Classifier increased diagnostic sensitivity by 30–39% and correctly classified 100% of benign nodules negative by the 17‐mutation panel. In contrast, testing with broad targeted next‐generation sequencing panels decreased diagnostic specificity by detecting additional mutations of unknown clinical significance in 19–39% of benign lesions. Our results demonstrate that, independent of mutational status, miRNA expression profiles are strongly associated with altered molecular pathways underlying thyroid tumorigenesis. Combined testing for miRNA gene expression and well‐established somatic gene alterations is a novel diagnostic strategy that can improve the preoperative diagnosis and surgical management of patients with indeterminate thyroid nodules.
Archives of Pathology & Laboratory Medicine | 2014
David L. Smith; Aude Lamy; Sylvie Beaudenon-Huibregtse; Richard Sesboüé; Walairat Laosinchai-Wolf; Jean-Christophe Sabourin; Emmanuel Labourier
CONTEXT Current clinicopathologic assessment of malignant neoplastic diseases entails the analysis of specific genetic alterations that provide diagnostic, prognostic, or therapy-determining information. OBJECTIVE To develop and validate a robust molecular method to detect clinically relevant mutations in various tissue types and anatomic pathology specimens. DESIGN Genes of interest were amplified by multiplex polymerase chain reaction and sequence variants identified by liquid bead array cytometry. The BRAF assay was fully characterized by using plasmids and genomic DNA extracted from cell lines, metastatic colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissues, and thyroid nodule fine-needle aspirates. RESULTS Qualitative multiplex assays for 22 different mutations in the BRAF, HRAS, KRAS, NRAS, or EGFR genes were established. The high signal-to-noise ratio of the technology enabled reproducible detection of BRAF c.1799T>A (p.V600E) at 0.5% mutant allele in 20 ng of genomic DNA. Precision studies with multiple operators and instruments showed very high repeatability and reproducibility with 100% (98.7%-100%) qualitative agreement among 292 individual measures in 38 runs. Evaluation of 1549 representative pathologic specimens in 2 laboratories relative to independent reference methods resulted in 99.0% (97.6%-99.6%) agreement for colorectal FFPE tissues (n = 416) and 98.9% (98.2%-99.4%) for thyroid fine-needle aspiration specimens (n = 1133) with an overall diagnostic odds ratio of 10 856 (2451-48 078). CONCLUSIONS The multiplex assay system is a sensitive and reliable method to detect BRAF c.1799T>A mutation in colorectal and thyroid lesions. This optimized technology platform is suitable for the rapid analysis of clinically actionable genetic alterations in cytologic and histologic specimens.
Cancer Genetics and Cytogenetics | 2012
Fei Ye; Walairat Laosinchai-Wolf; Emmanuel Labourier
Molecular methods play a critical role in the accurate diagnosis of leukemia by complementing morphologic, cytochemical, immunophenotypic, and cytogenetic analyses. We developed a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method combined with liquid bead array cytometry for the rapid detection of genetic alterations associated with leukemia. Fusion transcripts corresponding to the most common recurrent chromosomal translocations were reproducibly detected in as low as 0.1-10 ng of total RNA with an analytical sensitivity of 0.01-1%. Multiday, multilot, multioperator, and multi-instrument precision studies, for a total of 678 independent measures in 46 runs, showed a very high reproducibility with 100% agreement among replicates. Using multiplex panels for four to 20 independent targets, we demonstrate the flexibility of the method to codetect rare splicing isoforms, discriminate among multiple variants generated by unique cytogenetic abnormalities, identify distinct chromosomal partners involved with 11q23 or 17q21 rearrangements, and assess cryptic abnormalities not detectable by standard cytogenetics such as the t(12;21), del(1p32), or NPM1 mutations. Overall, three different internal control transcripts and 34 variants resulting from 18 abnormal chromosomal sites were evaluated. These results underscore the value of the multiplex assay system as a sensitive and reliable technology platform for the characterization of relevant genetic alterations in leukemia.