Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Naffrechoux is active.

Publication


Featured researches published by Emmanuel Naffrechoux.


Ultrasonics Sonochemistry | 2003

Effects of ultrasound on adsorption–desorption of p-chlorophenol on granular activated carbon

Oualid Hamdaoui; Emmanuel Naffrechoux; L. Tifouti; Christian Pétrier

The aim of this work is the evaluation of the effects of ultrasound on p-chlorophenol adsorption-desorption on granular activated carbon. Adsorption equilibrium experiments and batch kinetics studies were carried out in the presence and the absence of ultrasound at 21 kHz. Results indicate that the adsorption of p-chlorophenol determined in the presence of ultrasound is lower than the adsorption observed in the absence of ultrasound. Desorption of p-chlorophenol from activated carbon with and without the application of ultrasound was studied. The desorption rates were favoured by increased ultrasound intensity. This rise is more noticeable as temperature increases. The addition of ethanol or NaOH to the system causes an enhancement of the amount of p-chlorophenol desorbed, especially in the presence of ultrasound. A synergetic enhancement of the desorption rate was observed when ultrasonic irradiation was coupled with ethanol chemical regeneration.


Ultrasonics Sonochemistry | 2008

Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media

Oualid Hamdaoui; Emmanuel Naffrechoux

The degradation of 4-chlorophenol (4-CP) in aqueous media by 516 kHz ultrasonic irradiation was investigated in order to clarify the degradation mechanism. The degradation of concentrated 4-CP solution by means of ultrasound, UV irradiation and their combined application was also studied. The obtained results indicate that *OH radical are the primary reactive species responsible for 4-CP ultrasonic degradation. Very little 4-CP degradation occurs if the sonolysis is carried out in the presence of the *OH radical scavenger tert-butyl alcohol, also indicating that little or no pyrolysis of the compound occurs. The dominant degradation mechanism is the reaction of substrate with *OH radicals at the gas bubble-liquid interface rather than high temperature direct pyrolysis in ultrasonic cavities. This mechanism can explain the lower degradation rate of the ionic form of 4-CP that is partly due to the rapid dissociation of *OH radicals in alkaline solutions. The sonochemical destruction of concentrated 4-CP aqueous solution is obtained with low rate. Coupling photolysis with ultrasound irradiation results in increased efficiency compared to the individual processes operating at common conditions. Interestingly, the photosonochemical decomposition rate constant is greater than the additive rate constants of the two processes. This may be the result of three different oxidative processes direct photochemical action, high frequency sonochemistry and reaction with ozone produced by UV irradiation of air, dissolved in liquid phase because of the geyser effect of ultrasound streaming. Additionally, the photodecomposition, at 254 nm, of hydrogen peroxide produced by ultrasound generating *OH radical can partly explain the destruction enhancement.


Ultrasonics Sonochemistry | 2009

Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound

Oualid Hamdaoui; Emmanuel Naffrechoux

This work describes the results of investigations carried out to examine the adsorption kinetics of 4-chlorophenol (4-CP) from aqueous solution containing tert-butyl alcohol (10%, v/v) onto granular activated carbon (GAC) in the presence of ultrasound of different high frequencies (516, 800 and 1660 kHz) and acoustic powers (15.2, 21.5, 31.1 and 38.3 W). The main objective of this study is to describe the mechanism of ultrasound-assisted adsorption rather than the enhancement of adsorption capacity. Sonochemical degradation of 4-CP was studied in the absence and presence of tert-butyl alcohol. The sonolysis of 4-CP is effectively inhibited by the addition of tert-butyl alcohol (10%, v/v) and very little 4-CP degradation occurs, indicating that little or no pyrolysis of the compound occurs. Without addition of tert-butyl alcohol, after 300 min and at 1660 kHz, the removal of 4-CP in the presence of ultrasound for an acoustic power of 38.3 W was nearly total (99%), but in the conventional method only 60% was eliminated. In this case, the removal of 4-CP by GAC in the ultrasound-assisted technique is due to both adsorption and ultrasonic degradation, but the removal by simple stirring is only due to adsorption, which makes a direct comparison unacceptable. In order to distinguish sonochemical degradation and adsorption of 4-CP onto GAC and to make an exact and practical comparison of the adsorption in the absence and presence of ultrasound, kinetic adsorption experiments were conducted using aqueous solution containing 10% (v/v) tert-butyl alcohol. The obtained results show that both adsorption rate and adsorbed amount were significantly enhanced and improved in the presence of ultrasound for all the studied frequencies and powers. The enhancement of adsorption is favored by increasing ultrasonic power. Adsorption kinetic data were modeled using the liquid-film mass transfer equation and intraparticle diffusion model. The values of the intraparticle diffusion coefficient obtained in the presence of ultrasound are greater than that obtained in the absence of ultrasound. In the initial period of adsorption, where external mass transfer is assumed to predominate, liquid-film mass transfer coefficients significantly increased by the assistance of ultrasound. These results indicate that ultrasound enhances the mass transport in the pores as well as across the boundary layer. This effect increased with increasing ultrasonic power for the three studied frequencies. The average order for the studied ultrasonic waves according to the initial adsorption rate, the intraparticle diffusion coefficient and the liquid-film mass transfer coefficient is 516 kHz>800 kHz>1660 kHz.


Ultrasonics Sonochemistry | 2008

Ultrasound-assisted removal of malachite green from aqueous solution by dead pine needles

Oualid Hamdaoui; Mahdi Chiha; Emmanuel Naffrechoux

The dead needles of Aleppo pine (Pinus halepensis) were tested as a possible sorbent for the removal of malachite green from aqueous solutions in the absence and presence of ultrasound. Batch process was employed for sorption kinetic and equilibrium studies. Sorption experiments indicated that the sorption capacity was dependent of operating variables. Both the rate and the amount of malachite green sorption are markedly increased in the presence of the ultrasonic field. The dye removal with the assistance of ultrasound was enhanced with the increase of sorbate initial concentration and temperature, and with the decrease of sorbent dosage and ionic strength. The combination of stirring and ultrasound leads to an improvement of the removal of dye. The sorption kinetics was controlled by the intraparticle diffusion. The intraparticle diffusion coefficient increased 1.7 times in the presence of ultrasound and up to 3.6 times in the combined process. The sorption capacity, estimated according to the Freundlich model, indicates that ultrasound enhanced the sorption properties of the sorbent. The effect of ultrasound on the improvement of dye sorption is due to a variety of physical and mechanical effects as well as to thermal properties. The combination of ultrasound and stirring for the sorption process was shown to be of interest for the treatment of wastewaters contaminated with malachite green.


Ultrasonics Sonochemistry | 2010

Comparison of characterization methods in high frequency sonochemical reactors of differing configurations.

Samuel de La Rochebrochard d’Auzay; Jean-François Blais; Emmanuel Naffrechoux

The aim of this study was to compare different characterization methods in order to evaluate the sonochemical efficiency of a cavitational reactor. The selected characterization methods were calorimetry and dosimetry based on potassium iodide oxidation or nitrite and nitrate ion formation. The effects of experimental parameters on physical and chemical effects of ultrasound were quantified with two transducers at a frequency of 366kHz. The studied factors comprised temperature (16-28 degrees C), acoustic power (6-38W), power density (4-61WL(-1)) and reactor configuration (D(reactor 1)=65mm, D(reactor 2)=102mm). Spectrophotometry was compared to ionic chromatography as a method to quantify nitrite and nitrate ions. Spectrometry was shown to be as representative as ionic chromatography. The reaction system based on the formation of both nitrite and nitrate ions was demonstrated to be as reliable as a potassium iodide dosimeter. The representativity of calorimetry was limited since part of acoustic energy was assumed to be used in the chemical reactions observed by dosimetry. Similar sonochemical efficiencies resulted from an increase of sonified surface (D(reactor 1)=65mm vs. D(reactor 2)=102mm) coupled to a 2-time decrease in power density at a constant emitting surface. The effect of emitting-to-sonified surface area ratio on the acoustic field was apparently limited by the height of the liquid.


Water Research | 2003

Reduction of chloroform formation potential of humic acid by sonolysis and ultraviolet irradiation.

Emmanuel Naffrechoux; Evelyne Combet; Bernard Fanget; Christian Pétrier

This study is concerned with the changes of chloroform formation potential during the reaction of humic acid (HA) and sodium hypochlorite caused by different oxidative pretreatments: ultraviolet (UV) irradiation, ultrasonic (US) irradiation or combined UV-US irradiations. The UV and US decomposition of a reagent HA in water was investigated. The characterization of the oxidized HA sample by UV absorptiometry, synchronous fluorescence spectroscopy and size exclusion chromatography points a synergetic effect of the combined process. The values of the chlorine demand and chloroform formation potential were conventionally determined after a 96 h reaction at neutral pH. It was found that all applied processes decreased the concentration of chloroform but the highest decrease was observed for the UV-US treatment.


Ultrasonics Sonochemistry | 2012

Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor

Samuel de La Rochebrochard; Joël Suptil; Jean-François Blais; Emmanuel Naffrechoux

The aim of this study was to evaluate the effects of liquid height and frequency on sonochemical efficiency of a cup-horn sonoreactor. The selected frequencies (22, 371, 504 kHz) and liquid height (29-348 mm) were applied while measuring acoustic yield, I(3)(-) formation rate and the resulting sonochemical efficiency. The frequency effect was shown to be coupled to liquid height effect. Indeed, acoustic zones (i.e. Fresnel and Fraunhöfer zones), which limits depends on both transducer diameter and frequency, significantly determine the production of radicalar species quantified by I(3)(-) formation rate. An increase of ultrasonic frequency results in lower acoustic yield and higher sonochemical efficiency. Theoretical physical and chemical effects attributed to collapsing bubbles were considered. Sonochemical efficiencies obtained at 500 kHz were similar or higher than those at 371 kHz, depending on liquid height. The effect of reactor configuration was further investigated as an hypothesis to explain unsignificant effect of standing waves in our study. Therefore, the dependence of sonochemical efficiency with liquid height might be firstly attributed to reactor configuration prior to frequency effects.


Ultrasonics Sonochemistry | 2013

Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation

Samuel de La Rochebrochard; Emmanuel Naffrechoux; Patrick Drogui; Guy Mercier; Jean-François Blais

The aim of this research was to evaluate the efficiency of an ultrasonication process in combination with METIX-AC technology, a chemical process, for metal removal and dewatering ability, with preservation of fertilizing properties of sewage sludge. Waste activated sludge samples having a total solids concentration of 4 and 20 g L(-1), were enriched with Cu and Zn in order to exceed the limiting values recommended by Québec regulation for sludge valorization. Ultrasonication was applied at low frequency (22 kHz) at specific energies ranging from 180 to 66,000 kJ kg(-1) of dry sludge. Ultrasound-assisted leaching rates and yields were similar to chemical leaching alone for Zn, whereas solubilisation was reduced for Cu, regardless the specific energy. Fertilizing properties preservation and dewatering ability were similar in ultrasound-assisted leaching, compared to chemical leaching alone. These trends were mainly attributed to the changes of metal speciation, particle size and morphology during ultrasonication, in addition to untreated sludge properties.


Global Biogeochemical Cycles | 2016

A century of human-driven changes in the carbon dioxide concentration of lakes

Marie-Elodie Perga; Stephen C. Maberly; Jean-Philippe Jenny; Benjamin Alric; Cécile Pignol; Emmanuel Naffrechoux

Now that evasion of carbon dioxide (CO2) from inland waters is accounted for in global carbon models, it is crucial to quantify how these fluxes have changed in the past and forecast how they may alter in the future in response to local and global change. Here we developed a sediment proxy for the concentration of summer surface dissolved CO2 concentration and used it to reconstruct changes over the past 150 years for three large lakes that have been affected by climate warming, changes in nutrient load, and detrital terrigenous supplies. Initially CO2 neutral to the atmosphere, all three lakes subsequently fluctuated between near equilibrium and supersaturation. Although catchment inputs have supplied CO2 to the lakes, internal processes and reallocation have ultimately regulated decadal changes in lake surface CO2 concentration. Nutrient concentration has been the dominant driver of CO2 variability for a century although the reproducible, nonmonotonic relationship of CO2 to nutrient concentration suggests an interplay between metabolic and chemical processes. Yet for two of these lakes, climatic control of CO2 concentrations has been important over the last 30 years, promoting higher surface CO2 concentrations, likely by decreasing hypolimnetic carbon storage. This new approach offers the unique opportunity to scale, a posteriori, the long-term impact of human activities on lake CO2.


Ultrasonics Sonochemistry | 2011

Swift and efficient sono-hydrolysis of nitriles to carboxylic acids under basic condition: role of the oxide anion radical in the hydrolysis mechanism.

Pascal Lignier; Julien Estager; Nathalie Kardos; Lydie Gravouil; Julien Gazza; Emmanuel Naffrechoux; Micheline Draye

Carboxylic acids are promising candidates for new sustainable strategies in organic synthesis. In this paper, we ascertain the potential of ultrasound for the hydrolysis of nitriles into carboxylic acids through the study of key parameters of the reaction: pH, hydrolysis medium, reaction time and activation technique. The positive influence of ultrasound under basic conditions is due to more than mechanical effects of cavitation. Indeed, the rate of hydrolysis is dramatically increased under sonication in NaOH solutions. A radical mechanism involving the oxide anion radical O(*-) is proposed.

Collaboration


Dive into the Emmanuel Naffrechoux's collaboration.

Top Co-Authors

Avatar

Cécile Pignol

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabien Arnaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Poulenard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Sabatier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bernard Montuelle

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marcel Dorioz

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Elodie Perga

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge