Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Quansah is active.

Publication


Featured researches published by Emmanuel Quansah.


BioMed Research International | 2015

Motor Neuron Diseases in Sub-Saharan Africa: The Need for More Population-Based Studies

Emmanuel Quansah; Thomas K. Karikari

Motor neuron diseases (MNDs) are devastating neurological diseases that are characterised by gradual degeneration and death of motor neurons. Major types of MNDs include amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). These diseases are incurable, with limited disease-modifying treatment options. In order to improve MND-based biomedical research, drug development, and clinical care, population-based studies will be important. These studies, especially among less-studied populations, might identify novel factors controlling disease susceptibility and resistance. To evaluate progress in MND research in Africa, we examined the published literature on MNDs in Sub-Saharan Africa to identify disease prevalence, genetic factors, and other risk factors. Our findings indicate that the amount of research evidence on MNDs in Sub-Saharan Africa is scanty; molecular and genetics-based studies are particularly lacking. While only a few genetic studies were identified, these studies strongly suggest that there appear to be population-specific causes of MNDs among Africans. MND genetic underpinnings vary among different African populations and also between African and non-African populations. Further studies, especially molecular, genetic and genomic studies, will be required to advance our understanding of MND biology among African populations. Insights from these studies would help to improve the timeliness and accuracy of clinical diagnosis and treatment.


Applied and Translational Genomics | 2015

Developing expertise in bioinformatics for biomedical research in Africa.

Thomas K. Karikari; Emmanuel Quansah; Wael M.Y. Mohamed

Research in bioinformatics has a central role in helping to advance biomedical research. However, its introduction to Africa has been met with some challenges (such as inadequate infrastructure, training opportunities, research funding, human resources, biorepositories and databases) that have contributed to the slow pace of development in this field across the continent. Fortunately, recent improvements in areas such as research funding, infrastructural support and capacity building are helping to develop bioinformatics into an important discipline in Africa. These contributions are leading to the establishment of world-class research facilities, biorepositories, training programmes, scientific networks and funding schemes to improve studies into disease and health in Africa. With increased contribution from all stakeholders, these developments could be further enhanced. Here, we discuss how the recent developments are contributing to the advancement of bioinformatics in Africa.


PLOS ONE | 2016

Social Factors Influencing Child Health in Ghana

Emmanuel Quansah; Lilian Akorfa Ohene; Linda Norman; Michael Osei Mireku; Thomas K. Karikari

Objectives Social factors have profound effects on health. Children are especially vulnerable to social influences, particularly in their early years. Adverse social exposures in childhood can lead to chronic disorders later in life. Here, we sought to identify and evaluate the impact of social factors on child health in Ghana. As Ghana is unlikely to achieve the Millennium Development Goals’ target of reducing child mortality by two-thirds between 1990 and 2015, we deemed it necessary to identify social determinants that might have contributed to the non-realisation of this goal. Methods ScienceDirect, PubMed, MEDLINE via EBSCO and Google Scholar were searched for published articles reporting on the influence of social factors on child health in Ghana. After screening the 98 articles identified, 34 of them that met our inclusion criteria were selected for qualitative review. Results Major social factors influencing child health in the country include maternal education, rural-urban disparities (place of residence), family income (wealth/poverty) and high dependency (multiparousity). These factors are associated with child mortality, nutritional status of children, completion of immunisation programmes, health-seeking behaviour and hygiene practices. Conclusions Several social factors influence child health outcomes in Ghana. Developing more effective responses to these social determinants would require sustainable efforts from all stakeholders including the Government, healthcare providers and families. We recommend the development of interventions that would support families through direct social support initiatives aimed at alleviating poverty and inequality, and indirect approaches targeted at eliminating the dependence of poor health outcomes on social factors. Importantly, the expansion of quality free education interventions to improve would-be-mother’s health knowledge is emphasised.


Neuroscience Letters | 2017

Chronic methylphenidate regulates genes and proteins mediating neuroplasticity in the juvenile rat brain

Emmanuel Quansah; Tiziana Sgamma; Estabraq Jaddoa; Tyra Zetterström

Methylphenidate (MPH) is the front-line psychostimulant medication prescribed for alleviating the symptoms associated with attention deficit hyperactivity disorder (ADHD) in children. Here, we investigated the effects of chronic MPH (2.0mg/kg, twice daily for 15days) exposure to young rats (20-25days old at start of treatment) on the expression of genes and proteins associated with neuroplasticity, such as activity regulated cytoskeleton-associated protein (Arc), insulin receptor substrate protein 53 (IRSp53), cell division control protein 42 (Cdc42), and actin-related protein 2 (Arp2). Chronic MPH increased Arc expression in areas of the cerebrum including, the striatum, nucleus accumbens and hippocampus. In addition, chronic MPH also increased the expression of IRSp53 in the striatum, while Cdc42 and Arp2 were specifically increased in the nucleus accumbens. Conversely, chronic MPH decreased Arc and IRSp53 protein expression in the cerebellum, indicating differential effects of the drug in cerebral areas relative to the cerebellum. Overall, our results indicate that chronic MPH treatment increases expression of genes and proteins associated with dendritic spine formation and neuronal plasticity in target areas of the cerebrum while it decreases the expression in the cerebellum.


eNeurologicalSci | 2016

Disregard of neurological impairments associated with neglected tropical diseases in Africa

Emmanuel Quansah; Esther Sarpong; Thomas K. Karikari

Neglected tropical diseases (NTDs) affect people in the bottom billion poorest in the world. These diseases are concentrated in rural areas, conflict zones and urban slums in Africa and other tropical areas. While the World Health Organization recognizes seventeen priority NTDs, the list of conditions present in Africa and elsewhere that are eligible to be classified as NTDs is much longer. Although NTDs are generally marginalized, their associated neurological burden has been almost completely disregarded. However, reports indicate that trichuriasis, schistosomiasis and hookworm infection, among others, cause impairments in memory and cognition, negatively affecting school attendance rates and educational performance particularly among children, as well as agricultural productivity among adults. Consequently, the neurological impairments have substantial influence on education and economic productivity, thus aggravating and perpetuating poverty in affected societies. However, inadequate research, policy and public health attention has been paid to the neurological burdens associated with NTDs. In order to appropriately address these burdens, we recommend the development of policy interventions that focus on the following areas: (i) the introduction of training programs to develop the capacity of scientists and clinicians in research, diagnostic and treatment approaches (ii) the establishment of competitive research grant schemes to fund cutting-edge research into these neurological impairments, and (iii) the development of public health interventions to improve community awareness of the NTD-associated neurological problems, possibly enhancing disease prevention and expediting treatment.


Applied and Translational Genomics | 2015

Neurogenomics: Challenges and opportunities for Ghana

Thomas K. Karikari; Emmanuel Quansah

The application of genomic tools and technologies has shown the potential to help improve healthcare and our understanding of disease mechanisms. While genomic tools are increasingly being applied to research on infectious diseases, malaria and neglected tropical diseases in Africa, an area that has seen little application of genomic approaches on this continent is neuroscience. In this article, we examined the prospects of developing neurogenomics research and its clinical use in Ghana, one of the African countries actively involved in genomics research. We noted that established international research funding sources and foundations in genomic research such as H3ABioNet nodes established at a couple of research centres in Ghana provide excellent platforms for extending the usage of genomic tools and techniques to neuroscience-related research areas. However, existing challenges such as the (i) lack of degree programmes in neuroscience, genomics and bioinformatics; (ii) low availability of infrastructure and appropriately-trained scientists; and (iii) lack of local research funding opportunities, need to be addressed. To promote and safeguard the long-term sustainability of neurogenomics research in the country, the impact of the existing challenges and possible ways of addressing them have been discussed.


Neurochemistry International | 2017

1H NMR-based metabolomics reveals neurochemical alterations in the brain of adolescent rats following acute methylphenidate administration

Emmanuel Quansah; Victor Ruiz-Rodado; Martin Grootveld; Fay Probert; Tyra Zetterström

&NA; The psychostimulant methylphenidate (MPH) is increasingly used in the treatment of attention deficit hyperactivity disorder (ADHD). While there is little evidence for common brain pathology in ADHD, some studies suggest a right hemisphere dysfunction among people diagnosed with the condition. However, in spite of the high usage of MPH in children and adolescents, its mechanism of action is poorly understood. Given that MPH blocks the neuronal transporters for dopamine and noradrenaline, most research into the effects of MPH on the brain has largely focused on these two monoamine neurotransmitter systems. Interestingly, recent studies have demonstrated metabolic changes in the brain of ADHD patients, but the impact of MPH on endogenous brain metabolites remains unclear. In this study, a proton nuclear magnetic resonance (1H NMR)‐based metabolomics approach was employed to investigate the effects of MPH on brain biomolecules. Adolescent male Sprague Dawley rats were injected intraperitoneally with MPH (5.0 mg/kg) or saline (1.0 ml/kg), and cerebral extracts from the left and right hemispheres were analysed. A total of 22 variables (representing 13 distinct metabolites) were significantly increased in the MPH‐treated samples relative to the saline‐treated controls. The upregulated metabolites included: amino acid neurotransmitters such as GABA, glutamate and aspartate; large neutral amino acids (LNAA), including the aromatic amino acids (AAA) tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline; and metabolites associated with energy and cell membrane dynamics, such as creatine and myo‐inositol. No significant differences in metabolite concentrations were found between the left and right cerebral hemispheres. These findings provide new insights into the mechanisms of action of the anti‐ADHD drug MPH. HighlightsThe effect of MPH on endogenous brain metabolites was investigated.Acute MPH treatment increased the levels of a number of cerebral metabolites, including amino acid transmitters (e.g. GABA and glutamate) and aromatic amino acids (e.g. tyrosine and phenylalanine).The upregulated metabolites may elevate both cerebral excitatory and inhibitory neurotransmission processes.


Genomics | 2018

Towards diversity in genomics: The emergence of neurogenomics in Africa?

Emmanuel Quansah; Nathaniel W. McGregor

There is a high burden of mental and neurological disorders in Africa. Nevertheless, there appears to be an under-representation of African ancestry populations in large-scale genomic studies. Here, we evaluated the extent of under-representation of Africans in neurogenomic studies in the GWAS Catalog. We found 569 neurogenomic studies, of which 88.9% were exclusively focused on people with European ancestry and the remaining 11.1% having African ancestry cases included. In terms of population, only 1.2% of the total populations involved in these 569 GWAS studies were of African descent. Further, most of the individuals in the African ancestry category were identified to be African-Americans/Afro-Caribbeans, highlighting the huge under-representation of homogenous African populations in large-scale neurogenomic studies. Efforts geared at establishing strong collaborative ties with European/American researchers, maintaining freely accessible biobanks and establishing comprehensive African genome data repositories to track African genome variations are critical for propelling neurogenomics/precision medicine in Africa.


European Neuropsychopharmacology | 2018

Methylphenidate alters monoaminergic and metabolic pathways in the cerebellum of adolescent rats

Emmanuel Quansah; Victor Ruiz-Rodado; Martin Grootveld; Tyra Zetterström

Abnormalities in the cerebellar circuitry have been suggested to contribute to some of the symptoms associated with attention deficit hyperactivity disorder (ADHD). The psychostimulant methylphenidate (MPH) is the major drug for treating this condition. Here, the effects of acute (2.0 mg/kg and 5.0 mg/kg) and chronic (2.0 mg/kg, twice daily for 15 days) MPH treatments were investigated in adolescent (35-40 days old) rats on monoaminergic and metabolic markers in the cerebellum. Data acquired indicates that acute MPH treatment (2.0 mg/kg) decreased cerebellar vesicular monoamine transporter (VMAT2) density, while chronic treatment caused an increase. In contrast, protein levels of tyrosine hydroxylase (TH) and the dopamine D1 receptor were not significantly altered by neither acute nor chronic MPH treatment. In addition, while chronic but not acute MPH treatment significantly enhanced dopamine turnover (DOPAC/dopamine) in the cerebellum, levels of dopamine and homovanillic acid (HVA) were not altered. Acute MPH (5.0 mg/kg) significantly modified levels of a range of cerebellar metabolites with similar trends also detected for the lower dose (2.0 mg/kg). In this regard, acute MPH tended to decrease cerebellar metabolites associated with energy consumption and excitatory neurotransmission including glutamate, glutamine, N-acetyl aspartate, and inosine. Conversely, levels of some metabolites associated with inhibitory neurotransmission, including GABA and glycine were reduced by acute (5.0 mg/kg) MPH, together with acetate, aspartate and hypoxanthine. In conclusion, this study demonstrated that MPH alters cerebellar biochemistry, and that this effect depends on both dose and duration of treatment. The therapeutic significance of these results requires further investigation.


Applied and Translational Genomics | 2015

Widening participation would be key in enhancing bioinformatics and genomics research in Africa

Thomas K. Karikari; Emmanuel Quansah; Wael M.Y. Mohamed

Abstract Bioinformatics and genome science (BGS) are gradually gaining roots in Africa, contributing to studies that are leading to improved understanding of health, disease, agriculture and food security. While a few African countries have established foundations for research and training in these areas, BGS appear to be limited to only a few institutions in specific African countries. However, improving the disciplines in Africa will require pragmatic efforts to expand training and research partnerships to scientists in yet-unreached institutions. Here, we discuss the need to expand BGS programmes in Africa, and propose mechanisms to do so.

Collaboration


Dive into the Emmanuel Quansah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Sarpong

University of Cape Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge