Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Rincón is active.

Publication


Featured researches published by Emmanuel Rincón.


Plant and Soil | 1995

Patterns and regulation of mycorrhizal plant and fungal diversity

Edith B. Allen; Michael F. Allen; Dot J. Helm; James M. Trappe; Randy Molina; Emmanuel Rincón

The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single “functional group” of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.


Trees-structure and Function | 1993

Growth responses of tropical deciduous tree seedlings to contrasting light conditions

Emmanuel Rincón; Pilar Huante

SummaryThe growth responses of seedlings of Amphipterygium adstringens, Caesalpinia eriostachys, and C. platyloba, species associated with undisturbed parts of the tropical deciduous forest in México, and Apoplanesia paniculata and Heliocarpus pallidus, two gap-requiring pioneer species, were determined under contrasting light conditions in a growth chamber experiment. The high (400 μmol m−2 s−1) and low (80 μmol m−2 s−1) light treatments correspond to the light available in a medium size gap and underneath the vegetation canopy in the deciduous forest during the rainy season, respectively. Following four destructive harvests the biomass production, relative growth rate, root/shoot ratio, specific leaf area, net assimilation rate, leaf area ratio and light dependency were determined for all species. In the high light treatment all species achieved higher relative growth rates and net assimilation rates than when growing at low light intensity. However, the two pioneer species showed the highest light dependency and were the species more affected by the low light treatment in biomass production. The two Caesalpinia species showed similar growth responses, but C. platyloba was the most shade tolerant species. Plastic adjustments in terms of the specific leaf area were more evident in the two pioneer species.


Oecologia | 1997

Responses to light changes in tropical deciduous woody seedlings with contrasting growth rates

Pilar Huante; Emmanuel Rincón

Abstract We evaluated the responses in growth, biomass allocation, photosynthesis and stomatal conductance, to changes in light in woody seedlings from the tropical deciduous forest in Mexico, which shows a highly seasonal rain pattern. We studied ten species, which differed by 30-fold in relative growth rate (RGR). We analyzed plant growth in two contrasting light levels during 52 days and two transfers: from high to low (HL) and from low to high (LH) light intensity, and the respective controls in high (HH) and low (LL) light for another 52 days. The photosynthetic capacity (Amax) and stomatal conductance were measured at the day of the transfer between light conditions and at the end of the experiment. Species with high RGR showed the largest changes in RGR in response to contrasting light conditions (HH/LL ratio), and species with low RGR showed low responses. The fast-growing species were the most plastic, followed by species with intermediate growth rates, with the slow-growing species being the least plastic. Fast-growing species achieved higher maximum photosynthetic capacities (Amax) and stomatal conductance and higher response to light than slow-growing species. Species with high RGR showed a low RGR HH/LH ratio, suggesting a large response of L plants when transfered to H. The RGR of the species were associated with species specific leaf area and with the response in the leaf area, net assimilation rate and leaf weight ratio, suggesting the importance of the leaf area produced and the leaf characteristics rather than root:shoot ratio in determining RGR. Considering that seed germination is expected at the beginning of the rainy period, seedlings of most of the species will experience high-light conditions during its early growth. There are large annual variations in the time required for canopy closure (35–75 days). The influence of these variations may have different effect on the species studied. Species with intermediate growth rate and intermediate response to light changes were less affected by light reduction than fast-growing species. The intermediate-RGR species Caesalpiniaeriostachys is the most abundant and widely distributed species, perhaps this could be in part due to its ability to acclimate to both light increases and decreases. The fast-growing species studied here can be found in open sites in the forest and in areas cleared for pasture growth. These fast-growing species eventually reach the canopy, although this may require several canopy openings during their lives, which implies juvenile shade tolerance. In the tropical deciduous forest juvenile pioneer trees also benefit from the temporary high light available caused by the dry period during the rainy season. The slow-growing species Celaenodendronmexicanum forms small patches of monospecific forest; the adult trees are not completely deciduous, and they retain their old leaves for a long time period before shedding. Thus seedlings of this species may receive lower levels of light, in agreement with its shade tolerance and its lower response to light increases.


Mycorrhiza | 1997

Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico

Lea Corkidi; Emmanuel Rincón

Abstract Root samples of 37 species distributed on the beach and along a successional gradient (from mobile to stabilized areas) in a tropical sand dune system on the Gulf of Mexico showed that 97% of the species were mycorrhizal. The mycorrhizal inoculum potential of the sand from several dune areas was compared using two different bioassays. Firstly, the field rate of colonization by arbuscular mycorrhizal fungi of Chamaecrista chamaecristoides seedlings transplanted to random plots in the foredunes and in the mobile area was measured. The seedlings were harvested at intervals during 3 weeks to record mycorrhizal structures. In the mobile area, no mycorrhizal colonization was observed during the experiment. In the foredunes, hyphae and external mycelium were present in 40% of the seedlings as early as 8 days after transplanting. After 15 days, arbuscules and vesicles were observed in 60 and 20% of the seedlings, respectively, and after 21 days, 100, 46 and 20% of the seedlings showed hyphae, arbuscules and vesicles, respectively. Secondly, maize seedlings were transplanted to pots previously filled with sand from the foredunes, mobile dunes, grassland and a Dyphisa robinoides shrub area. After 1 month, the lowest mycorrhizal inoculum potential was recorded for the mobile dunes and the highest for the shrub area. As expected, mycorrhizal inoculum potential increased with dune stabilization.


Oecologia | 1998

Foraging for nutrients, responses to changes in light, and competition in tropical deciduous tree seedlings

Pilar Huante; Emmanuel Rincón; F. Stuart Chapin

Abstract We evaluated (1) the responses of two co-occurring tropical tree species, Heliocarpuspallidus and Caesalpiniaeriostachys, to changes in light, (2) the ability of these species to search for and exploit a fertilized soil patch, (3) the relationship between the capacity to forage for a fertilized patch and the capacity to respond to changes in light availability and (4) how the relationship between light and nutrient acquisition influenced the competitive interactions between these species. Plants of the two species were exposed to a factorial combination of high (H) and low (L) light intensity and fertilized (+Fp) and unfertilized (−Fp) nutrient patches for 50 days. Half of the plants from H were then transferred to L (HL treatment), and half of the plants from L were transferred to H (LH). The remaining plants were kept in their original light condition and grown for another 50 days. Plants were grown in these light and patch treatments alone (one plant per pot) and in interspecific competition (one plant per species resulting in two plants per pot). Both species exploited fertilized patches by increasing root biomass and length in the patch. This enhanced plant productivity and growth rate mainly under LH and HH conditions for Heliocarpus and the HH condition for Caesalpinia). When plants in the HH light environment were grown with an unfertilized patch, plant biomass and relative growth rates (RGRs) were even lower than␣under the LL light environment [(HH–Fp)<LL]. However, the combined activity of shoot and roots when above- and below-ground resources were temporally and spatially heterogeneous influenced plant productivity and growth rate. The benefit from light increase (LH) was reduced when grown with an unfertilized patch. Larger reductions in root biomass, length and density in the patch, and in plant biomass and RGR, were exhibited by Heliocarpus than by Caesalpinia. These results suggest a close relationship between root foraging and light capture, where the benefit of the exploitation of the patch will be reflected in whole-plant benefit, if enough light is captured above-ground. In addition, the results suggest a change in the expected plant responses to light due to heterogeneity in soil nutrients, even though the fertilized patch was only a small proportion of the total soil volume. Leaf characteristics such as specific leaf area responded only to light conditions and not to patchily distributed nutrients. Root characteristics responded more strongly to nutrient heterogeneity. Competition modified the pattern of foraging under both high- and low-light conditions in Heliocarpus by 50 days, and the ability to forage for a fertilized patch under LL after 100 days of growth for Caesalpinia. Even though plant growth and productivity are greatly reduced under low-light conditions (HL and LL), competition modifies the ability of species to forage for a rich patch (especially for the fast-growing species Heliocarpus).


Mycorrhiza | 1993

Effect of vesicular-arbuscular mycorrhizae on seedling growth of four tree species from the tropical deciduous forest in Mexico

Pilar Huante; Emmanuel Rincón; Edith B. Allen

The influence of vesicular-arbuscular mycorrhizae on the growth of seedlings of Caesalpinia eriostachys, Cordia alliodora, Ipomoea wolcottiana and Pithecellobium mangense was investigated in a greenhouse experiment conducted at the Biological Station of Chamela on the Pacific coast of Mexico. Dry biomass production, relative growth rate, root/shoot ratio and mycorrhizal dependency were quantified for 75-day-old seedlings. With the exception of the pioneer species I. wolcottiana, mycorrhizal infection resulted in increases in biomass production, relative growth rate and leaf area. The root/shoot ratios attained for the species, however, did not show a consistent trend with infection. Nevertheless, all species had root/shoot ratios below 1 with infection and only one, Cordia alliodora, had a ratio greater than 1 without infection. The two late successional species from the mature part of the forest, Caesalpinia eriostachys and P. mangense, showed a larger mycorrhizal dependency than the two associated with disturbed environments.


Trees-structure and Function | 1992

Root system analysis of seedlings of seven tree species from a tropical dry forest in Mexico

Pilar Huante; Emmanuel Rincón; Mayra Gavito

SummaryRoot attributes of tree seedlings of seven species from the tropical deciduous forest along the Pacific Coast of Mexico are described using morphometirc root system analysis. Mean relative growth rate, root/shoot ratios, specific root length, root density, mean number of roots tips and root length/leaf area ratio were determined in seedlings grown for 35 days inside growth chambers. All the species had low relative growth rates, low root/shoot ratios and low root densities (<0.5 cm/cm3). The species associated with disturbed habitats, in contrast to the species characteristic of undisturbed areas, presented small seeds, a dichotomous root branching pattern and large specific root length. No relationship was found between seed size and mean relative growth rate among the species studied.


Journal of Biosciences | 1993

Environmental responses of plants and ecosystems as predictors of the impact of global change

F. Stuart Chapin; Emmanuel Rincón; Pilar Huante

An understanding of plant responses to fluctuations in environment is critical to predictions of plant and ecosystem responses to climate change. In the northern hemisphere, the northern limits of distribution of major biomes are probably determined by the tolerance of their dominant physiognomic types (e.g., deciduous hardwood trees) to minimum winter temperatures and can thus be predicted from long-term patterns of temperature fluctuations. At a more detailed level, the responses of functional groups of plants to altered climate can be predicted from their known responses to fluctuations in soil resources (nutrients and water) and the expected effect of climatic change on these soil resources. Laboratory and field experiments demonstrate the feasibility of this approach.


Trees-structure and Function | 1994

Influence of mineral nutrient availability on growth of tree seedlings from the tropical deciduous forest

Emmanuel Rincón; Pilar Huante

The effects of different nutrient availabilities on growth and biomass partitioning in seedlings from the tropical deciduous forest in Mexico were compared. The tree species studied were Heliocarpus pallidus, a species associated with disturbed parts of the forest, and Caesalpinia eriotachys, Jacquinia pungens and Recchia mexicana, species from mature, undisturbed habitats. The tropical deciduous tree seedlings were grown in pure silica sand for 50 days inside growth chambers under four nutrient regimes; 5, 20, 100 and 200% Long Ashton nutrient solutions. Data showed contrasting responses among species to different nutrient availabilities. Except Jacquinia pungens, all species had increased growth and productivity as nutrient level increased from 5 to 100%; however, no significant differences in these parameters were detected between 100 and 200% in all species. Compared with mature forest species, pioneer species showed higher variations in biomass production, relative growth rate and net assimilation rate. In contrast to mature forest species, root/ shoot ratios in Heliocarpus pallidus were greater and thus showed higher biomass allocation to roots when nutrient supply was limited. This response suggests higher phenotypic plasticity in pioneer species. Species from mature parts of the forest (Caesalpinia eriostachys, Recchia mexicana) showed less dependency on nutrient supply than pioneer species. These responses appear to support observations from studies with temperate plants investigating growth responses to soil fertility.


Mycorrhiza | 1993

Observations of canopy bromeliad roots compared with plants rooted in soils of a seasonal tropical forest, Chamela, Jalisco, Mexico

Michael F. Allen; Emmanuel Rincón; Edith B. Allen; Pilar Huante; Jonathan J. Dunn

Roots of canopy bromeliads of a seasonal tropical forest were observed for mycorrhizal activity and compared with plants rooted in the soil during the later part of the growing season. No vesicular-arbuscular mycorrhizae or ectomycorrhizae were observed in the bromeliads. However, some interesting septate fungi were observed within the cortex of all samples where the roots were present in organic matter trapped in the canopy. All 15 soil-rooted plant species we observed were vesicular arbuscular mycorrhizal. While no known mycorrhizal types were apparently present in these canopy epiphytes, we cannot rule out the possible formation of symbioses between canopy epiphytes and other fungi in these habitats.

Collaboration


Dive into the Emmanuel Rincón's collaboration.

Top Co-Authors

Avatar

Pilar Huante

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Edith B. Allen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alma Orozco-Segovia

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Pérez-Jiménez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Eliane Ceccon

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Irma Acosta

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María Esther Sánchez-Coronado

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

F. Stuart Chapin

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Casandra Reyes-García

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge