Emmanuel Thévenon
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel Thévenon.
Nature | 2014
Fabrice Besnard; Yassin Refahi; Valérie Morin; Benjamin Marteaux; Géraldine Brunoud; Pierre Chambrier; Frédérique Rozier; Vincent Mirabet; Jonathan Legrand; Stéphanie Lainé; Emmanuel Thévenon; Etienne Farcot; Coralie Cellier; Pradeep Das; Anthony Bishopp; Renaud Dumas; François Parcy; Ykä Helariutta; Arezki Boudaoud; Christophe Godin; Jan Traas; Yann Guédon; Teva Vernoux
How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.
The Plant Cell | 2011
Edwige Moyroud; Eugenio G. Minguet; Felix Ott; Levi Yant; David Posé; Marie Monniaux; Sandrine Blanchet; Olivier Bastien; Emmanuel Thévenon; Detlef Weigel; Markus Schmid; François Parcy
This work presents the generation of a predictive model describing the DNA recognition specificity of the LEAFY floral transcription factor. The model is used to predict in vivo regulatory interactions between LEAFY and its target genes from mere inspection of various plant genome sequences. Despite great advances in sequencing technologies, generating functional information for nonmodel organisms remains a challenge. One solution lies in an improved ability to predict genetic circuits based on primary DNA sequence in combination with detailed knowledge of regulatory proteins that have been characterized in model species. Here, we focus on the LEAFY (LFY) transcription factor, a conserved master regulator of floral development. Starting with biochemical and structural information, we built a biophysical model describing LFY DNA binding specificity in vitro that accurately predicts in vivo LFY binding sites in the Arabidopsis thaliana genome. Applying the model to other plant species, we could follow the evolution of the regulatory relationship between LFY and the AGAMOUS (AG) subfamily of MADS box genes and show that this link predates the divergence between monocots and eudicots. Remarkably, our model succeeds in detecting the connection between LFY and AG homologs despite extensive variation in binding sites. This demonstrates that the cis-element fluidity recently observed in animals also exists in plants, but the challenges it poses can be overcome with predictions grounded in a biophysical model. Therefore, our work opens new avenues to deduce the structure of regulatory networks from mere inspection of genomic sequences.
The EMBO Journal | 2008
Cécile Hamès; Denis Ptchelkine; Clemens Grimm; Emmanuel Thévenon; Edwige Moyroud; Francine Gérard; Jean-Louis Martiel; Reyes Benlloch; François Parcy; Christoph W. Müller
The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal structures for the DNA‐binding domain of Arabidopsis thaliana LFY bound to two target promoter elements. LFY adopts a novel seven‐helix fold that binds DNA as a cooperative dimer, forming base‐specific contacts in both the major and minor grooves. Cooperativity is mediated by two basic residues and plausibly accounts for LFYs effectiveness in triggering sharp developmental transitions. Our structure reveals an unexpected similarity between LFY and helix‐turn‐helix proteins, including homeodomain proteins known to regulate morphogenesis in higher eukaryotes. The appearance of flowering plants has been linked to the molecular evolution of LFY. Our study provides a unique framework to elucidate the molecular mechanisms underlying floral development and the evolutionary history of flowering plants.
Nature Communications | 2014
Max H. Nanao; Thomas Vinos-Poyo; Géraldine Brunoud; Emmanuel Thévenon; Meryl Mazzoleni; David Mast; Stéphanie Lainé; Shucai Wang; Gretchen Hagen; Hanbing Li; Tom J. Guilfoyle; François Parcy; Teva Vernoux; Renaud Dumas
The plant hormone auxin is a key morphogenetic regulator acting from embryogenesis onwards. Transcriptional events in response to auxin are mediated by the auxin response factor (ARF) transcription factors and the Aux/IAA (IAA) transcriptional repressors. At low auxin concentrations, IAA repressors associate with ARF proteins and recruit corepressors that prevent auxin-induced gene expression. At higher auxin concentrations, IAAs are degraded and ARFs become free to regulate auxin-responsive genes. The interaction between ARFs and IAAs is thus central to auxin signalling and occurs through the highly conserved domain III/IV present in both types of proteins. Here, we report the crystal structure of ARF5 domain III/IV and reveal the molecular determinants of ARF-IAA interactions. We further provide evidence that ARFs have the potential to oligomerize, a property that could be important for gene regulation in response to auxin.
Plant Journal | 2013
Hicham Chahtane; Gilles Vachon; Marie Le Masson; Emmanuel Thévenon; Sophie Périgon; Nela Mihajlović; Anna Kalinina; Robin Michard; Edwige Moyroud; Marie Monniaux; Camille Sayou; Vojislava Grbic; François Parcy; Gabrielle Tichtinsky
In indeterminate inflorescences, floral meristems develop on the flanks of the shoot apical meristem, at positions determined by auxin maxima. The floral identity of these meristems is conferred by a handful of genes called floral meristem identity genes, among which the LEAFY (LFY) transcription factor plays a prominent role. However, the molecular mechanism controlling the early emergence of floral meristems remains unknown. A body of evidence indicates that LFY may contribute to this developmental shift, but a direct effect of LFY on meristem emergence has not been demonstrated. We have generated a LFY allele with reduced floral function and revealed its ability to stimulate axillary meristem growth. This role is barely detectable in the lfy single mutant but becomes obvious in several double mutant backgrounds and plants ectopically expressing LFY. We show that this role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY. We propose that this function unifies the diverse roles described for LFY in multiple angiosperm species, ranging from monocot inflorescence identity to legume leaf development, and that it probably pre-dates the origin of angiosperms.
Plant Journal | 2011
Reyes Benlloch; Min Chul Kim; Camille Sayou; Emmanuel Thévenon; François Parcy; Ove Nilsson
The transition to flowering in Arabidopsis is characterized by the sharp and localized upregulation of APETALA1 (AP1) transcription in the newly formed floral primordia. Both the flower meristem-identity gene LEAFY (LFY) and the photoperiod pathway involving the FLOWERING LOCUS T (FT) and FD genes contribute to this upregulation. These pathways have been proposed to act independently but their respective contributions and mode of interaction have remained elusive. To address these questions, we studied the AP1 regulatory region. Combining in vitro and in vivo approaches, we identified which of the three putative LFY binding sites present in the AP1 promoter is essential for its activation by LFY. Interestingly, we found that this site is also important for the correct photoperiodic-dependent upregulation of AP1. In contrast, a previously proposed putative FD-binding site appears dispensable and unable to bind FD and we found no evidence for FD binding to other sites in the AP1 promoter, suggesting that the FT/FD-dependent activation of AP1 might be indirect. Altogether, our data give new insight into the interaction between the FT and LFY pathways in the upregulation of AP1 transcription under long-day conditions.
Plant Physiology | 2016
Sébastien Baud; Zsolt Kelemen; Johanne Thévenin; Céline Boulard; Sandrine Blanchet; Alexandra To; Manon Payre; Nathalie Berger; Delphine Effroy-Cuzzi; José Manuel Franco-Zorrilla; Marta Godoy; Roberto Solano; Emmanuel Thévenon; François Parcy; Loïc Lepiniec; Bertrand Dubreucq
LEC2, ABI3, and LEC1 synergistically interact to activate an oleosin promoter. In Arabidopsis (Arabidopsis thaliana), transcriptional control of seed maturation involves three related regulators with a B3 domain, namely LEAFY COTYLEDON2 (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (ABI3/FUS3/LEC2 [AFLs]). Although genetic analyses have demonstrated partially overlapping functions of these regulators, the underlying molecular mechanisms remained elusive. The results presented here confirmed that the three proteins bind RY DNA elements (with a 5′-CATG-3′ core sequence) but with different specificities for flanking nucleotides. In planta as in the moss Physcomitrella patens protoplasts, the presence of RY-like (RYL) elements is necessary but not sufficient for the regulation of the OLEOSIN1 (OLE1) promoter by the B3 AFLs. G box-like domains, located in the vicinity of the RYL elements, also are required for proper activation of the promoter, suggesting that several proteins are involved. Consistent with this idea, LEC2 and ABI3 showed synergistic effects on the activation of the OLE1 promoter. What is more, LEC1 (a homolog of the NF-YB subunit of the CCAAT-binding complex) further enhanced the activation of this target promoter in the presence of LEC2 and ABI3. Finally, recombinant LEC1 and LEC2 proteins produced in Arabidopsis protoplasts could form a ternary complex with NF-YC2 in vitro, providing a molecular explanation for their functional interactions. Taken together, these results allow us to propose a molecular model for the transcriptional regulation of seed genes by the L-AFL proteins, based on the formation of regulatory multiprotein complexes between NF-YBs, which carry a specific aspartate-55 residue, and B3 transcription factors.
Nature Communications | 2016
Camille Sayou; Max H. Nanao; Marc Jamin; David Posé; Emmanuel Thévenon; Laura Grégoire; Gabrielle Tichtinsky; Grégoire Denay; Felix Ott; Marta Peirats Llobet; Markus Schmid; Renaud Dumas; François Parcy
Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.
Development | 2016
Fanny Moreau; Emmanuel Thévenon; Robert Blanvillain; Irene López-Vidriero; José Manuel Franco-Zorrilla; Renaud Dumas; François Parcy; Patrice Morel; Christophe Trehin; Cristel C. Carles
Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana. ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. Summary: ULT1 and its novel partner protein ULT1 INTERACTING FACTOR 1 (UIF1) regulate floral meristem homeostasis, probably via direct repression of WUS expression.
Science | 2015
Samuel F. Brockington; Edwige Moyroud; Camille Sayou; Marie Monniaux; Max H. Nanao; Emmanuel Thévenon; Hicham Chahtane; Norman Warthmann; Michael Melkonian; Yong Zhang; Gane Ka-Shu Wong; Detlef Weigel; Renaud Dumas; François Parcy
Brunkard et al. propose that the identification of novel LEAFY sequences contradicts our model of evolution through promiscuous intermediates. Based on the debate surrounding land plant phylogeny and on our analysis of these interesting novel sequences, we explain why there is no solid evidence to disprove our model.