Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Yumvihoze is active.

Publication


Featured researches published by Emmanuel Yumvihoze.


Science of The Total Environment | 2010

Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis

Raphael A. Lavoie; Craig E. Hebert; Jean-François Rail; Birgit M. Braune; Emmanuel Yumvihoze; Laura Hill; David R. S. Lean

Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ(15)N) and carbon (δ(13)C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ(15)N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.


Science of The Total Environment | 2011

Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada

Mary-Luyza Avramescu; Emmanuel Yumvihoze; Holger Hintelmann; Jeff Ridal; Danielle Fortin; David R. S. Lean

The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e. the relative importance of various groups of anaerobic microbes (FeRP, SRB, and MPA) that affect net monomethylmercury (MMHg) formation in contaminated sediments of the St. Lawrence River (SRL) near Cornwall (Zone 1), Ontario, Canada. Methylation and demethylation potentials were measured separately by using isotope-enriched mercury species ((200)Hg(2+) and MM(199)Hg(+)) in sediment microcosms treated with specific microbial inhibitors. Sediments were sampled and incubated in the dark at room temperature in an anaerobic chamber for 96h. The potential methylation rate constants (K(m)) and demethylation rates (K(d)) were found to differ significantly between microcosms. The MPA-inhibited microcosm had the highest potential methylation rate constant (0.016d(-1)), whereas the two SRB-inhibited microcosms had comparable potential methylation rate constants (0.003d(-1) and 0.002d(-1), respectively). The inhibition of methanogens stimulated net methylation by inhibiting demethylationand by stimulating methylation along with SRB activity. The inhibition of both methanogens and SRB was found to enhance the iron reduction rates but did not completely stop MMHg production. The strong positive correlation between K(m) and Sulfate Reduction Rates (SRR) and between K(d) and Methane Production Rates (MPR) supports the involvement of SRB in Hg methylation and MPA in MMHg demethylation in the sediments. In contrast, the strong negative correlation between K(d) and Iron Reduction Rates (FeRR) shows that the increase in FeRR corresponds to a decrease in demethylation, indicating that iron reduction may influence net methylation in the SLR sediments by decreasing demethylation rather than favouring methylation.


Environmental Science & Technology | 2012

Divalent Base Cations Hamper HgII Uptake

Valérie Daguené; Emily McFall; Emmanuel Yumvihoze; Shurong Xiang; Marc Amyot; Alexandre J. Poulain

Despite the alarming trends of declining base cation concentrations in boreal lakes, no studies have attempted to predict the consequences of this decline on the geochemical cycle of mercury, a top priority contaminant worldwide. In this study, we used a whole-cell gram-negative bioreporter to evaluate the direction and magnitude of changes in net accumulation of Hg(II) by bacteria in response to changing base cation concentrations. We show that regardless of the speciation of Hg(II) in solution, increasing divalent base cation concentrations decrease net Hg(II) accumulation by the bioreporter, suggesting a protective effect of these cations. Our work suggests that the complexity of the cell wall of gram-negative bacteria must be considered when modeling Hg uptake pathways; we propose that base divalent cations contribute to hamper net Hg(II) accumulation by decreasing outer membrane permeability and, therefore, the passive diffusion of Hg(II) species to the periplasmic space. This work points to an unsuspected and likely harmful consequence of a delay in recovering from acidification in boreal lakes, in that uptake of Hg(II) by bacteria is not only enhanced by the reduced pH but can also be enhanced by a decline in base cation levels.


Environmental Toxicology and Chemistry | 2010

Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry.

Mary-Luyza Avramescu; Joy Zhu; Emmanuel Yumvihoze; Holger Hintelmann; Danielle Fortin; David R. S. Lean

Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values.


Environment International | 2014

Identification of environmental sources of lead exposure in Nunavut (Canada) using stable isotope analyses.

Myriam Fillion; Jules M. Blais; Emmanuel Yumvihoze; Maya Nakajima; Peter Workman; Geraldine Osborne; Hing Man Chan

BACKGROUND Blood lead levels (BLLs) were measured in the adult Inuit population of Nunavut, Northern Canada, during the Inuit Health Survey (IHS) in 2007-2008. Approximately 10% of the adult participants had BLL over the Health Canadas guidance of 100μg/L. OBJECTIVES 1) To repeat the measurement of BLL among the IHS participants with high BLL and household members including pregnant women and children under 10years of age; 2) to measure lead (Pb) concentrations in environmental samples to identify potential sources and 3) to explore how Pb from environmental samples contributes to BLL using Pb stable isotopic analyses. METHODS Blood samples were collected from 100 adults and 56 children in 2012. A total of 169 environmental samples (tap water, house dust, paint, country food, soil, and ammunition) were collected from 14 houses from three communities where the IHS participants had the highest BLL. Total Pb concentrations and Pb isotope mass balance were determined by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS The geometric mean of BLL was 43.1μg/L; BLL increased with age and was higher in adults than children (71.1 vs. 17.5μg/L). Median Pb concentrations in water (1.9μg/L) and dust (27.1μg/m(2) for wiped dust, 32.6mg/kg for vacuum dust coarse fraction, and 141.9mg/kg for vacuum dust fine fraction) were generally higher than in other parts of Canada. Median Pb concentrations of food and soil coarse and fine fractions were low (36.6μg/kg, 5.4mg/kg and 11.8mg/kg respectively); paint chips exceeded the Canadian guidelines in two houses (median: 3.8mg/kg). Discriminant analyses and isotope ratio analyses showed that ammunition and house dust are major sources of Pb in this study population. CONCLUSION Analyses of Pb stable isotopes are useful to identify the routes of exposure to Pb. This approach can contribute to develop targeted public health programmes to prevent Pb exposure.


Science of The Total Environment | 2011

Total mercury and methylmercury in high altitude surface snow from the French Alps

Nicolas Marusczak; Catherine Larose; Aurélien Dommergue; Emmanuel Yumvihoze; David R. S. Lean; Rachid Nedjai; Christophe Ferrari

Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys.


Science of The Total Environment | 2015

Pre-industrial and recent (1970-2010) atmospheric deposition of sulfate and mercury in snow on southern Baffin Island, Arctic Canada.

Christian Zdanowicz; Eva Kruemmel; David R. S. Lean; Alexandre J. Poulain; Christophe Kinnard; Emmanuel Yumvihoze; Jiubin Chen; Holger Hintelmann

Sulfate (SO4(2-)) and mercury (Hg) are airborne pollutants transported to the Arctic where they can affect properties of the atmosphere and the health of marine or terrestrial ecosystems. Detecting trends in Arctic Hg pollution is challenging because of the short period of direct observations, particularly of actual deposition. Here, we present an updated proxy record of atmospheric SO4(2-) and a new 40-year record of total Hg (THg) and monomethyl Hg (MeHg) deposition developed from a firn core (P2010) drilled from Penny Ice Cap, Baffin Island, Canada. The updated P2010 record shows stable mean SO4(2-) levels over the past 40 years, which is inconsistent with observations of declining atmospheric SO4(2-) or snow acidity in the Arctic during the same period. A sharp THg enhancement in the P2010 core ca 1991 is tentatively attributed to the fallout from the eruption of the Icelandic volcano Hekla. Although MeHg accumulation on Penny Ice Cap had remained constant since 1970, THg accumulation increased after the 1980s. This increase is not easily explained by changes in snow accumulation, marine aerosol inputs or air mass trajectories; however, a causal link may exist with the declining sea-ice cover conditions in the Baffin Bay sector. The ratio of THg accumulation between pre-industrial times (reconstructed from archived ice cores) and the modern industrial era is estimated at between 4- and 16-fold, which is consistent with estimates from Arctic lake sediment cores. The new P2010 THg record is the first of its kind developed from the Baffin Island region of the eastern Canadian Arctic and one of very few such records presently available in the Arctic. As such, it may help to bridge the knowledge gap linking direct observation of gaseous Hg in the Arctic atmosphere and actual net deposition and accumulation in various terrestrial media.


Toxicology and Applied Pharmacology | 2015

Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

Ryan J. Mailloux; Emmanuel Yumvihoze; Hing Man Chan

The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O2(-)), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O2(-)mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O2(-) in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O2(-) production by mitochondria. Both rotenone and PQ, which increase O2(-) in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O2(-) into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O2(-) emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O2(-), specifically within the matrix of mitochondria when O2(-) is in adequate supply. Our results also show that O2(-) amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein.


Chemico-Biological Interactions | 2015

Superoxide anion radical (O2(-)) degrades methylmercury to inorganic mercury in human astrocytoma cell line (CCF-STTG1).

Ryan J. Mailloux; Emmanuel Yumvihoze; Hing Man Chan

Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain. Recent work has suggested that cleavage of the carbon-metal bond in MeHg in a biological environment is facilitated by reactive oxygen species (ROS). However, the oxyradical species that actually mediates this process has not been identified. Here, we provide evidence that superoxide anion radical (O2(-)) can convert MeHg to iHg. The calculated second-order rate constant for the degradation of 1μM MeHg by O2(-) generated by xanthine/xanthine oxidase was calculated to be 2×10(5)M(-1)s(-1). We were also able to show that this bioconversion can proceed in intact CCF-STTG1 human astrocytoma cells exposed to paraquat (PQ), a O2(-) generating viologen. Notably, exposure of cells to increasing amounts of PQ led to a dose dependent increase in both MeHg and iHg. Indeed, a 24h exposure to 500μM PQ induced a ∼13-fold and ∼18-fold increase in intracellular MeHg and iHg respectively. These effects were inhibited by superoxide dismutase mimetic MnTBAP. In addition, we also observed that a 24h exposure to a biologically relevant concentration of MeHg (1μM) did not induce cell death, oxidative stress, or even changes in cellular O2(-) and H2O2. However, co-exposure to PQ enhanced MeHg toxicity which was associated with a robust increase in cell death and oxidative stress. Collectively our results show that O2(-) can bioconvert MeHg to iHg in vitro and in intact cells exposed to conditions that simulate high intracellular O2(-) production. In addition, we show for the first time that O2(-) mediated degradation of MeHg to iHg enhances the toxicity of MeHg by facilitating an accumulation of both MeHg and iHg in the intracellular environment.


Global Biogeochemical Cycles | 2016

Historical variations of mercury stable isotope ratios in arctic glacier firn and ice cores.

Christian Zdanowicz; Eva M. Krümmel; Alexandre J. Poulain; Emmanuel Yumvihoze; Jiubin Chen; Marco Štrok; Michael Scheer; Holger Hintelmann

The concentration and isotopic composition of mercury (Hg) were determined in glacier core samples from Canadian Arctic ice caps dating from pre-industrial to recent time (early 21st century). Mean Hg levels increased from ≤ 0.2 ng L-1 in pre-industrial time to ~0.8-1.2 ng L-1 in the modern industrial era (last ~200 years). Hg accumulated on Arctic ice caps has Δ199Hg and Δ201Hg that are higher (~-1 to 2.9 ‰) than previously reported for Arctic snow (mostly < -1 ‰) impacted by atmospheric Hg depletion events, suggesting that these events contribute little to Hg accumulation on ice caps. The range of δ202Hg, Δ199Hg and Δ201Hg in glacier cores overlaps with that of Arctic Hg0(g) and of seawater in Baffin Bay, but also with that of mid-latitude precipitation and industrial Hg sources, including coal and Hg ores. A core from Agassiz ice cap (80.7 °N) shows a ~ +1 ‰ shift in δ202Hg over the 19th-20th centuries that could reflect changes in the isotopic composition of the atmospheric Hg pool in the High Arctic in response to growing industrial emissions at lower latitudes. This study is the first ever to report on historical variations of Hg stable isotope ratios in Arctic ice cores. Results could help constrain future modeling efforts of the global Hg biogeochemical cycle and the atmospheres response to changing Hg emissions, past and future.

Collaboration


Dive into the Emmanuel Yumvihoze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiubin Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge