Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuele Crespan is active.

Publication


Featured researches published by Emmanuele Crespan.


Nature | 2007

8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins

Giovanni Maga; Giuseppe Villani; Emmanuele Crespan; Ursula Wimmer; Elena Ferrari; Barbara Bertocci; Ulrich Hübscher

Specialized DNA polymerases (DNA pols) are required for lesion bypass in human cells. Auxiliary factors have an important, but so far poorly understood, role. Here we analyse the effects of human proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A) on six different human DNA pols—belonging to the B, Y and X classes—during in vitro bypass of different lesions. The mutagenic lesion 8-oxo-guanine (8-oxo-G) has high miscoding potential. A major and specific effect was found for 8-oxo-G bypass with DNA pols λ and η. PCNA and RP-A allowed correct incorporation of dCTP opposite a 8-oxo-G template 1,200-fold more efficiently than the incorrect dATP by DNA pol λ, and 68-fold by DNA pol η, respectively. Experiments with DNA-pol-λ-null cell extracts suggested an important role for DNA pol λ. On the other hand, DNA pol ι, together with DNA pols α, δ and β, showed a much lower correct bypass efficiency. Our findings show the existence of an accurate mechanism to reduce the deleterious consequences of oxidative damage and, in addition, point to an important role for PCNA and RP-A in determining a functional hierarchy among different DNA pols in lesion bypass.


Journal of Medicinal Chemistry | 2008

Structure-based optimization of pyrazolo[3,4-d]pyrimidines as Abl inhibitors and antiproliferative agents toward human leukemia cell lines.

Fabrizio Manetti; Chiara Brullo; Matteo Magnani; Francesca Mosci; Beatrice Chelli; Emmanuele Crespan; Silvia Schenone; Antonella Naldini; Olga Bruno; Maria Letizia Trincavelli; Giovanni Maga; Fabio Carraro; Claudia Martini; Francesco Bondavalli; Maurizio Botta

Results from molecular docking calculations and Grid mapping laid the foundations for a structure-based optimization approach to improve the biological properties of pyrazolo-pyrimidine derivatives in terms of inhibition of Abl enzymatic activity and antiproliferative properties toward human leukemia cells. Insertion of halogen substituents with various substitution patterns, suggested by simulations, led to a significant improvement of leukemia cell growth inhibition and to an increase up to 1 order of magnitude of the affinity toward Abl.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Replication protein A and proliferating cell nuclear antigen coordinate DNA polymerase selection in 8-oxo-guanine repair

Giovanni Maga; Emmanuele Crespan; Ursula Wimmer; Barbara van Loon; Alessandra Amoroso; Chiara Mondello; Cristina Belgiovine; Elena Ferrari; Giada A. Locatelli; Giuseppe Villani; Ulrich Hübscher

The adenine misincorporated by replicative DNA polymerases (pols) opposite 7,8-dihydro-8-oxoguanine (8-oxo-G) is removed by a specific glycosylase, leaving the lesion on the DNA. Subsequent incorporation of C opposite 8-oxo-G on the resulting 1-nt gapped DNA is essential for the removal of the 8-oxo-G to prevent G–C to T–A transversion mutations. By using model DNA templates, purified DNA pols β and λ and knockout cell extracts, we show here that the auxiliary proteins replication protein A and proliferating cell nuclear antigen act as molecular switches to activate the DNA pol λ- dependent highly efficient and faithful repair of A:8-oxo-G mismatches in human cells and to repress DNA pol β activity. By using an immortalized human fibroblast cell line that has the potential to induce cancer in mice, we show that the development of a tumoral phenotype in these cells correlated with a differential expression of DNA pols λ and β.


European Journal of Medicinal Chemistry | 2008

Synthesis, biological evaluation and docking studies of 4-amino substituted 1H-pyrazolo[3,4-d]pyrimidines.

Silvia Schenone; Chiara Brullo; Olga Bruno; Francesco Bondavalli; Luisa Mosti; Giovanni Maga; Emmanuele Crespan; Fabio Carraro; Fabrizio Manetti; Cristina Tintori; Maurizio Botta

The synthesis of new 4-amino substituted pyrazolo[3,4-d]pyrimidines along with their activity in cell-free enzymatic assays on Src and Abl tyrosine kinases is reported. Some compounds emerged as good dual inhibitors of the two enzymes, showed antiproliferative effects on two Bcr-Abl positive leukemia cell lines K-562 and KU-812, and induced apoptosis, as demonstrated by the PARP assay. Docking studies have been also performed to analyze the binding mode of compounds under study and to identify the structural determinants of their interaction with both Src and Abl.


Journal of Medicinal Chemistry | 2011

Design, synthesis, biological activity, and ADME properties of pyrazolo[3,4-d]pyrimidines active in hypoxic human leukemia cells: a lead optimization study.

Marco Radi; Elena Dreassi; Chiara Brullo; Emmanuele Crespan; Cristina Tintori; Vincenzo Bernardo; Massimo Valoti; Claudio Zamperini; Henry Daigl; Francesca Musumeci; Fabio Carraro; Antonella Naldini; Irene Filippi; Giovanni Maga; Silvia Schenone; Maurizio Botta

A family of dual Src/Abl inhibitors characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold was previously reported by us and proved to be active against several tumor cell lines. Among these compounds, a promising antileukemia lead (1) has been recently identified, but, unfortunately, it suffers from substandard pharmaceutical properties. Accordingly, an approach for the optimization of the lead 1 is described in the present work. A series of more soluble pyrazolo[3,4-d]pyrimidine derivatives were rationally designed and proved to maintain the dual Src/Abl activity of the lead. Selected compounds showed an interesting activity profile against three different leukemic cells also in hypoxic conditions, which are usually characterized by imatinib-resistance. Finally, in vitro ADME properties (PAMPA permeation, water solubility, microsomal stability) for the most promising inhibitors were also evaluated, thus allowing the identification of a few optimized analogues of lead 1 as promising antileukemia agents.


Nucleic Acids Research | 2012

Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences

Emmanuele Crespan; Tibor Czabany; Giovanni Maga; Ulrich Hübscher

‘Classical’ non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA polymerases (pols) are involved in the classical NHEJ pathway. We have compared in this work, the ability of human family X DNA pols β, λ and μ, to promote the MMEJ of different model templates with terminal microhomology regions. Our results reveal that DNA pol λ and DNA ligase I are sufficient to promote efficient MMEJ repair of broken DNA ends in vitro, and this in the absence of auxiliary factors. However, DNA pol β, not λ, was more efficient in promoting MMEJ of DNA ends containing the (CAG)n triplet repeat sequence of the human Huntingtin gene, leading to triplet expansion. The checkpoint complex Rad9/Hus1/Rad1 promoted end joining by DNA pol λ on non-repetitive sequences, while it limited triplet expansion by DNA pol β. We propose a possible novel role of DNA pol β in MMEJ, promoting (CAG)n triplet repeats instability.


ChemMedChem | 2011

N‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl]pyrimidin‐2‐amine as a Scaffold for the Synthesis of Inhibitors of Bcr‐Abl

Federica Arioli; Stella Borrelli; Francesco Colombo; Federico Falchi; Irene Filippi; Emmanuele Crespan; Antonella Naldini; Giusy Scalia; Alessandra Silvani; Giovanni Maga; Fabio Carraro; Maurizio Botta; Daniele Passarella

N‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl]pyrimidin‐2‐amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr‐Abl. The design is based on the bioisosterism between the 1,2,3‐triazole ring and the amide group. The synthesis involves a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti‐(1,4)‐triazole derivatives. One of the compounds obtained shows general activity similar to that of imatinib; in particular, it was observed to be more effective in decreasing the fundamental function of cdc25A phosphatases in the K‐562 cell line.


Bioorganic & Medicinal Chemistry Letters | 2011

Identification of potent c-Src inhibitors strongly affecting the proliferation of human neuroblastoma cells

Marco Radi; Chiara Brullo; Emmanuele Crespan; Cristina Tintori; Francesca Musumeci; Mariangela Biava; Silvia Schenone; Elena Dreassi; Claudio Zamperini; Giovanni Maga; Dafne Pagano; Adriano Angelucci; Mauro Bologna; Maurizio Botta

Neuroblastoma (NB) represents the most common extracranial paediatric solid tumor for which no specific FDA-approved treatment is currently available. The tyrosine kinase c-Src has been reported to play an important role in the differentiation, cell-adhesion and survival of NB cells. Starting from dual Src/Abl inhibitors previously found active in NB cell lines (1-3), small modification of the original structures almost abolished the Abl activity with a contemporary improvement of affinity and specificity for c-Src. Among the synthesized compounds, the most potent c-Src inhibitor (10a) showed a very interesting antiproliferative activity in SH-SY5Y cells with an IC(50) of 80 nM and a favourable ADME profile. A 3D SAR analysis was also attempted and may guide the design of more potent c-Src inhibitors as potential agents for NB treatment.


Bioorganic & Medicinal Chemistry Letters | 2009

Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors.

Stefania Olla; Fabrizio Manetti; Emmanuele Crespan; Giovanni Maga; Adriano Angelucci; Silvia Schenone; Mauro Bologna; Maurizio Botta

Pim1 belongs to a family of serine/threonine kinases, which is involved in the control of cell growth, differentiation, and apoptosis. Pim1 plays a pivotal role in cytokine signaling and is implicated in the development of a large number of tumors, representing a very attractive target for anticancer therapy. In this work, we applied a virtual screening protocol aimed at identifying small molecules able to inhibit Pim1 activity. The search of novel inhibitors was performed through a structure-based molecular modeling approach, taking advantage of the availability of the three-dimensional crystal structure of inhibitors bound to Pim1. Starting from the knowledge of protein-ligand complexes, the software LigandScout was used to generate pharmacophoric models, in turn used as queries to perform a virtual screening of databases, followed by docking experiments. As a result, a restricted set of candidates for biological testing was identified. Finally, among the six compounds selected as potential inhibitors of Pim1, two candidates endowed with a significant activity against Pim1 emerged. Interestingly, one of these compounds has a chemical scaffold different from inhibitors previously identified.


Nucleic Acids Research | 2007

Error-free bypass of 2-hydroxyadenine by human DNA polymerase λ with Proliferating Cell Nuclear Antigen and Replication Protein A in different sequence contexts

Emmanuele Crespan; Ulrich Hübscher; Giovanni Maga

1,2-dihydro-2-oxoadenine (2-OH-A), a common DNA lesion produced by reactive oxygen species, is a strong replicative block for several DNA polymerases (DNA pols). We have previously shown that various bases can be misincorporated opposite the 2-OH-A lesion and the type of mispairs varies with either the sequence context or the type of DNA pol tested. Here, we have analysed the ability of the human pol family X member DNA pol λ, to bypass the 2-OH-A lesion. DNA pol λ can perform error-free bypass of 2-OH-A when this lesion is located in a random sequence, whereas in a repeated sequence context, even though bypass was also largely error-free, misincorporation of dGMP could be observed. The fidelity of translesion synthesis of 2-OH-A in a repeated sequence by DNA pol λ was enhanced by the auxiliary proteins Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RP-A). We also found that the DNA pol λ active site residue tyrosine 505 determined the nucleotide selectivity opposite 2-OH-A. Our data show, for the first time, that the 2-OH-A lesion can be efficiently and faithfully bypassed by a human DNA pol λ in combination with PCNA and RP-A.

Collaboration


Dive into the Emmanuele Crespan's collaboration.

Top Co-Authors

Avatar

Giovanni Maga

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge